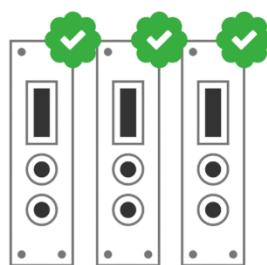


Register your device


Register your device to your **MyCAEN+** account and get access to our customer services, such as notification for new firmware or software upgrade, tracking service procedures or open a ticket for assistance. **MyCAEN+** accounts have a dedicated support service for their registered products. A set of basic information can be shared with the operator, speeding up the troubleshooting process and improving the efficiency of the support interactions.

MyCAEN+ dashboard is designed to offer you a direct access to all our after sales services. Registration is totally free, to create an account go to <https://www.caen.it/become-mycaenplus-user> and fill the registration form with your data.

1

create a MyCAEN+ account

2

register your devices

3

get support and more!

<https://www.caen.it/become-mycaenplus-user/>

Technical Information Manual

Revision n. 17
August 29th, 2019

MOD. V1495
GENERAL PURPOSE
VME BOARD

NPO:
00117/04:V1495.MUTx/17

Purpose of this Manual

This document contains the full hardware and operational description of the V1495 CAEN board.

Change Document Record

Date	Revision	Changes
Previous releases are not documented		
February 20 th , 2012	11	Updated § 2.9
June 14 th , 2012	12	Updated § 5.7; added CAENUpgrader tool references
July 16 th , 2012	13	Updated § 5.4.1; added A395D channels vs. Mezzanine Expansion Ports lines
March 6 th , 2014	14	Updated § 2.3, § 5.3.8
October 1 st , 2014	15	Updated § 4, § 4.1; added § 4.1.2, § 4.1.3, § 4.1.4, § 5.7
June 15 th , 2015	16	Included sections: Purpose of this Manual, Change Document Record, Symbols, Abbreviated terms and notation, Reference documents. Updated CAEN Disclaimer, § 3.1, § 5.2, § 5.2.1, § 5.5, § 5.7, § 5.9; added § 5.1, § 5.9.1, § 5.9.2, § 6, § 6.1, § 6.2
August 29 th , 2019	17	Updated MADE IN ITALY section of CAEN disclaimer. Updated § 5.5. Removed § 6.1 and § 6.2. Renamed § 6.

Symbols, abbreviated terms and notation

BKP	Backup
DAC	Digital-to-Analog Converter
DLO	Delay Line based on Oscillators
IRQ	Interrupt Request
PDL	Programmable Delay Line
RBF	Raw Binary File
SOF	SRAM Object File
STD	Standard
SW	Switch

Annotation: wherever in this document, VME FPGA and “Bridge” FPGA do refer to as the same FPGA.

Reference Documents

[RD1] GD2512 – CAENUpgrader QuickStart Guide

All documents can be downloaded at: <http://www.caen.it/csite/LibrarySearch.jsp>

CAEN S.p.A.
Via Vетraia, 11 55049 Viareggio (LU) - ITALY
Tel. +39.0584.388.398 Fax +39.0584.388.959
info@caen.it
www.caen.it

© CAEN SpA – 2019

Disclaimer

No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN SpA.

The information contained herein has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. CAEN SpA reserves the right to modify its products specifications without giving any notice; for up to date information please visit www.caen.it.

MADE IN ITALY: We remark that all our boards have been designed and assembled in Italy. In a challenging environment where a competitive edge is often obtained at the cost of lower wages and declining working conditions, we proudly acknowledge that all those who participated in the production and distribution process of our devices were reasonably paid and worked in a safe environment (while this is true for the boards marked "MADE IN ITALY", we cannot guarantee for third-party manufacturers).

CE

TABLE OF CONTENTS

PURPOSE OF THIS MANUAL	2
CHANGE DOCUMENT RECORD.....	2
SYMBOLS, ABBREVIATED TERMS AND NOTATION.....	2
REFERENCE DOCUMENTS	2
1. GENERAL DESCRIPTION.....	6
1.1. OVERVIEW	6
1.2. BLOCK DIAGRAM	7
2. TECHNICAL SPECIFICATIONS	8
2.1. PACKAGING.....	8
2.2. POWER REQUIREMENTS	8
2.3. FRONT PANEL DISPLAYS	8
2.4. FRONT PANEL.....	9
2.5. MOTHERBOARD SPECIFICATIONS	10
2.6. MEZZANINE SPECIFICATIONS	10
2.7. MEZZANINE BOARDS INSTALLATION	11
2.8. FRONT PANEL CONNECTOR CABLING.....	11
2.9. VME BASE ADDRESS.....	12
3. OPERATING MODES	13
3.1. TIMERS	13
3.1.1. <i>Timer0, Timer1</i>	13
3.1.2. <i>Timer2, Timer3</i>	14
3.2. FPGA PROGRAMMING	15
3.2.1. <i>VME FPGA</i>	15
3.2.2. <i>USER FPGA</i>	16
4. VME INTERFACE	17
4.1. REGISTER ADDRESS MAP	17
4.1.1. <i>Configuration ROM</i>	18
4.1.2. <i>VME Control Register</i>	19
4.1.3. <i>VME Interrupt Level Register</i>	19
4.1.4. <i>VME Interrupt Status ID Register</i>	19
4.1.5. <i>GEO Address Register</i>	19
4.1.6. <i>Module Reset Register</i>	19
4.1.7. <i>Firmware Revision Register</i>	20
4.1.8. <i>Scratch16 Register</i>	20

4.1.9.	<i>Scratch32 Register</i>	20
4.1.10.	<i>Select VME FPGA Flash Register</i>	20
4.1.11.	<i>Select USER FPGA Flash Register</i>	20
4.1.12.	<i>VME FPGA Flash Memory</i>	20
4.1.13.	<i>USER FPGA Flash Memory</i>	21
4.1.14.	<i>USER FPGA Configuration Register</i>	21
5.	USER FPGA DEMOS AND PROGRAMMING	22
5.1.	INTRODUCTION.....	22
5.2.	“USER” DEMO FIRMWARE OVERVIEW	23
5.2.1.	<i>Advanced Demo applications</i>	24
5.3.	REFERENCE DESIGN KIT.....	25
5.3.1.	<i>V1495HAL</i>	25
5.3.2.	<i>COIN_REFERENCE Design</i>	25
5.4.	INTERFACE DESCRIPTION.....	27
5.4.1.	<i>Global Signals</i>	27
5.4.2.	<i>REGISTER INTERFACE</i>	27
5.4.3.	<i>V1495 Front Panel Ports (PORT A,B,C,G) INTERFACE</i>	27
5.4.4.	<i>V1495 Mezzanine Expansion Ports (PORT D,E,F) INTERFACE</i>	28
5.4.5.	<i>PDL Configuration Interface</i>	28
5.4.6.	<i>Delay Lines and Oscillators I/O</i>	29
5.4.7.	<i>SPARE Interface</i>	29
5.4.8.	<i>LED Interface</i>	29
5.5.	REFERENCE DESIGN DESCRIPTION	30
5.5.1.	<i>Mezzanine board interfacing</i>	34
5.6.	REGISTER DETAILED DESCRIPTION	35
5.6.1.	<i>V1495 Front Panel Ports Registers (PORT A,B,C,G)</i>	35
5.6.2.	<i>V1495 Mezzanine Expansion Ports Registers (PORT D,E,F)</i>	35
5.6.3.	<i>Delay Selection</i>	36
5.6.4.	<i>PDL DELAY VALUE SETTING AND READBACK</i>	36
5.6.5.	<i>Delay Unit using PDLs</i>	38
5.6.6.	<i>Delay Unit using DLOs</i>	39
5.7.	QUARTUS II WEB EDITION PROJECT.....	41
5.8.	VME INTERRUPT REQUESTS FROM USER FPGA	45
5.9.	FIRMWARE UPGRADE.....	46
5.9.1.	<i>Restoring by the Backup VME FPGA firmware</i>	47
5.9.2.	<i>VME FPGA Recovery Procedure</i>	48
6.	TECHNICAL SUPPORT SERVICE.....	49

LIST OF FIGURES

FIG. 1.1: MOD. V1495 BLOCK DIAGRAM	7
FIG. 2.1: MODEL V1495 FRONT PANEL (WITH A395A/B/C PIGGY BACK BOARDS)	9
FIG. 2.2: MULTI-PIN CONNECTOR PIN ASSIGNMENT	11
FIG. 2.3: MOD. A967 CABLE ADAPTER	12
FIG. 2.4: BASE ADDRESS ROTARY SWITCHES.....	12

FIG. 3.1: TIMERS DIAGRAM	14
FIG. 3.2: GATE PULSE EXAMPLE	14
FIG. 3.3: TIMER2 AND TIMER3 USED TOGETHER FOR HANDLING A GATE PULSE.....	15
FIG. 3.4: FPGA VME DIAGRAM.....	15
FIG. 3.5: FPGA USER DIAGRAM.....	16
FIG. 5.1: USER FPGA BLOCK DIAGRAM	23
FIG. 5.3: PDL_CONTROL BIT FIELDS	36
FIG. 5.4: DELAY UNIT WITH PDLs	38
FIG. 5.5: PDLs DELAY LINE TIMING	38
FIG. 5.6: DELAY UNIT WITH DLOS	39
FIG. 5.7: DLOS DELAY LINE TIMING	39
FIG. 5.8: QUARTUS II PROJECT BROWSER	42
FIG. 5.9: QUARTUS II NETLIST	42
FIG. 5.10: QUARTUS II HIERARCHICAL STRUCTURE.....	43
FIG. 5.11: QUARTUS II COMPILER LAUNCHING	43
FIG. 5.12: QUARTUS II COMPILING SUMMARY	44
FIG. 5.13: CAENUPGRADER “UPGRADE FIRMWARE” MENU.....	46
FIG. 5.14: CAENUPGRADER WARNING MESSAGE WITH RBF FILES.....	46

LIST OF TABLES

TAB. 1.1: AVAILABLE ITEMS	6
TAB. 2.1: MODEL V1495 AND MEZZANINE BOARDS POWER REQUIREMENTS	8
TAB. 2.2: V1495 MOTHERBOARD I/O SECTIONS	10
TAB. 2.3: V1495 MEZZANINE BOARDS.....	10
TAB. 4.1: ADDRESS MAP FOR THE MODEL V1495.....	17
TAB. 4.2: ROM ADDRESS MAP FOR THE MODEL V1495.....	18
TAB. 5.1: COIN_REFERENCE SIGNALS.....	25
TAB. 5.2: V1495 MEZZANINE EXPANSION PORTS SIGNALS.....	28
TAB. 5.3: PDL CONFIGURATION INTERFACE SIGNALS.....	28
TAB. 5.4: DELAY LINES AND OSCILLATORS SIGNALS	29
TAB. 5.5: SPARE INTERFACE SIGNALS	29
TAB. 5.6: LED INTERFACE SIGNALS.....	29
TAB. 5.7: FRONT PANEL PORTS INTERFACE DIAGRAM	31
TAB. 5.8: COIN_REFERENCE REGISTER MAP	31
TAB. 5.9: A395D CHANNELS VS. MEZZANINE EXPANSION PORTS LINES	34
TAB. 5.10: SELECTION OF THE DELAY LINE	36

1. General description

1.1. Overview

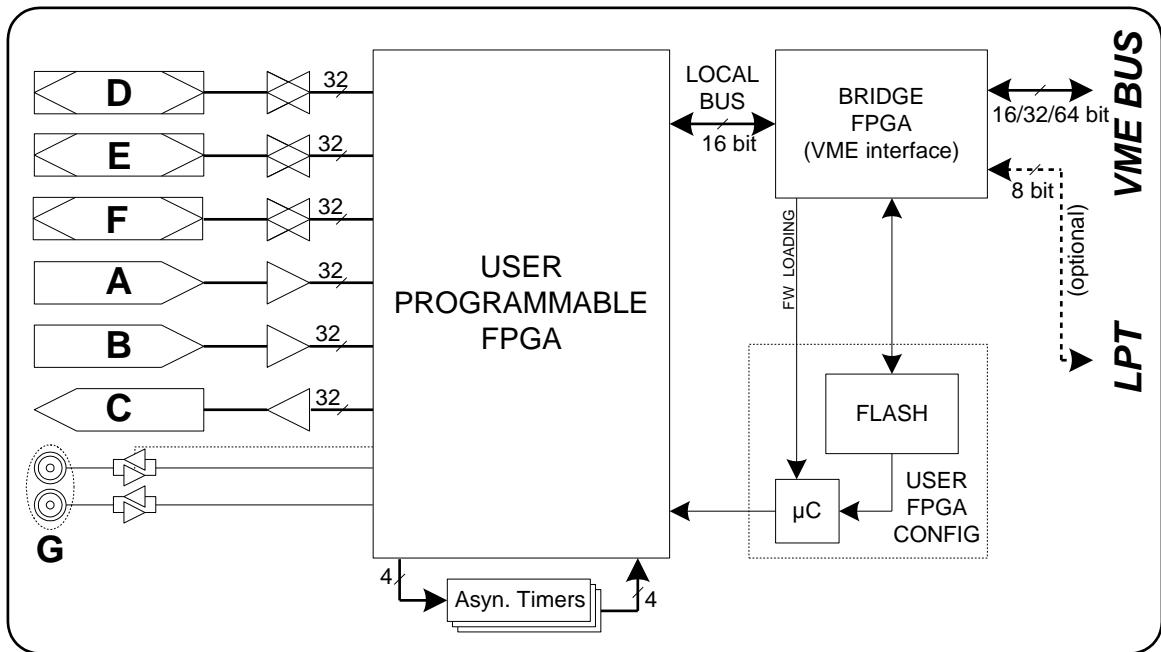
The Mod. V1495 is a VME 6U board, 1U wide, suitable for various digital Gate/Trigger/Translate/Buffer/Test applications, which can be directly customized by the User, and whose management is handled by two FPGA's:

“Bridge” FPGA, which is used for the VME interface and for the connection between the VME interface and the 2nd FPGA (FPGA “User”) through a proprietary local bus. “Bridge” FPGA manages also the programming via VME of the FPGA “User”.

“User” FPGA, which manages the front panel I/O channels. FPGA “User” is provided with a basic firmware which allows to perform coincidence matrix, I/O register and asynchronous timers functions.

“User” FPGA can be also free reprogrammed by the user with own custom logic function (see § 5). It is connected as slave to the “Bridge” FPGA via CAEN Local Bus, whose protocol shall be used in order to communicate with the “Bridge” FPGA and thus with the VME bus.

The I/O channel digital interface is composed by four sections (A, B, C, G) placed on the motherboard (see § 1.2). The channel interface can be expanded in the D, E, F sections by using up to 3 mezzanine boards (see § 2.6 and § 2.7), which can be added, choosing between the five types developed in order to cover the I/O functions and the ECL, PECL, LVDS, NIM, TTL signals and 16bit DAC (see § 1.2). The maximum number of channels can be expanded up to 194.


The “User” FPGA can be programmed on-the-fly directly via VME, without external hardware tools, without disconnecting the board from the setup, without resetting it or turning the crate off, allowing quick debug operations by the developer with his own firmware. A flash memory on the board can store the different programming file, which can be loaded to the “User” FPGA at any moment.

Four independent digital programmable asynchronous timers are available for Gate/Trigger applications. It is possible to chain them for generating complex Gate/Trigger pulse.

Tab. 1.1: Available items

Model	Description	Code
V1495	General Purpose VME Board	WV1495XAAAAAA
A395A	32 LVDS/ECL/PECL input channels	WA395XAAAAAAA
A395B	32 LVDS output channels	WA395XBAAAAAA
A395C	32 ECL output channels	WA395XCAAAAAA
A395D	8 NIM/TTL input/output channels	WA395XDAAAAAA
A395E	8 Channel 16Bit ±5V DAC	WA395XEAAAAAA
V1495 - Customization	3 A395C Mounting Option	WPERS0149501
A967	32 Channel Cable Adapter (1x32 to 2x16)	WA967XAAAAAA
FW1495SC	128 Channels Latching Scaler for V1495	WFW1495SCXAA

1.2. Block Diagram

Fig. 1.1: Mod. V1495 Block Diagram

2. Technical specifications

2.1. Packaging

The module is housed in a 6U-high, 1U-wide VME unit. The board is provided the VME P1, and P2 connectors and fits into both VME standard and V430 backplanes.

2.2. Power requirements

The power requirements of the modules are as follows:

Tab. 2.1: Model V1495 and mezzanine boards power requirements

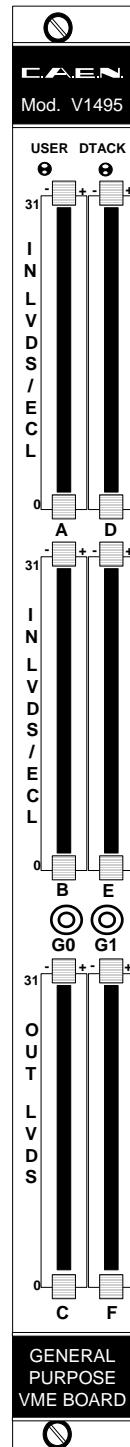
Power supply	V1495	A395A	A395B	A395C	A395D	A395E
+5 V	1 A	0.1 A	0.1 A	1.4 A	1.1 A	0.3 A

2.3. Front panel displays

The front panel (refer to § 2.4) hosts the following LEDs:

DTACK:

Color: green.


Function: driven by the “Bridge” FPGA, it lights up green whenever a VME read/write access to the board is performed.

USER:

Color: green / orange / red.

Function: Driven by the “User” FPGA; it is user programmable. See also § 5.4.8

2.4. Front Panel

Fig. 2.1: Model V1495 front panel (with A395A/B/C piggy back boards)

2.5. Motherboard Specifications

The Mod. V1495 Motherboard is composed by four I/O sections (see § 1.2), described in the following table:

Tab. 2.2: V1495 Motherboard I/O sections

Board	No. of Ch.	Direction	Logic	Signal	Bandwidth	Front panel connector
A/B	32	Input	Direct	LVDS/ECL/PECL (single ended TTL optional) 110ohm Rt. Extended Common Mode input range -4V to +5V; Fail Safe input feature.	200MHz	Robinson Nugent P50E-068-P1-SR1-TG type, (34+34) pins
C	32	Output	Direct	LVDS 100ohm RI	250MHz	Robinson Nugent P50E-068-P1-SR1-TG type, (34+34) pins
G	2	I/O selectable	TTL IN=Direct TTL OUT=Direct NIM IN=Invert NIM OUT=Direct	NIM/TTL selectable Open/50ohm Rt selectable	250MHz	LEMO 00

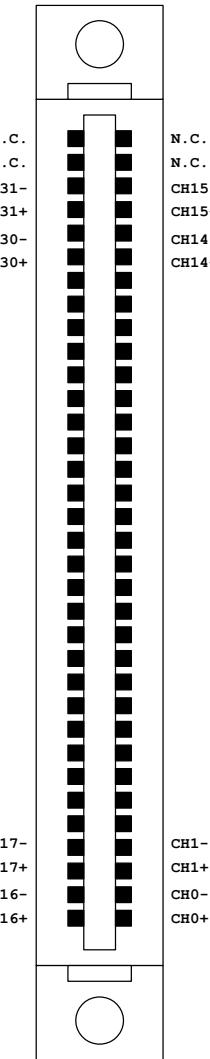
2.6. Mezzanine Specifications

The five I/O Mezzanine boards developed so far are described in the following table:

Tab. 2.3: V1495 Mezzanine boards

Board	No. of Ch.	Direction	Logic	Signal	Bandwidth	Front panel connector
A395A	32	Input	Direct	LVDS/ECL/ PECL (single ended TTL optional) 110ohm Rt. Extended Common Mode input range -4V to +5V; Fail Safe input feature.	200MHz	Robinson Nugent P50E-068-P1-SR1-TG type, (34+34) pins
A395B	32	Output	Direct	LVDS 100ohm RI	250MHz	Robinson Nugent P50E-068-P1-SR1-TG type, (34+34) pins
A395C	32	Output	Direct	ECL	300MHz	Robinson Nugent P50E-068-P1-SR1-TG type, (34+34) pins
A395D	8	I/O selectable	TTL IN=Direct TTL OUT=Direct NIM IN=Invert NIM OUT=Direct	NIM/TTL selectable Open/50ohm Rt selectable	250MHz	LEMO 00
A395E	8	Output	Analog	16bit resolution ±5V @10kΩ RL ±4V @200Ω RL	N.A.	LEMO 00

2.7. Mezzanine boards installation


In order to install one A395x-series mezzanine board on the V1495 motherboard it is necessary to follow these steps:

- Remove (unscrew) the metal cover (one at will)
- Plug the mezzanine board into the 100 pin connector on the motherboard
- Fix the mezzanine board with the screws

⚠ WARNING: A Mounting Option is necessary in order to install three A395C mezzanine boards on the V1495 (see Errore. L'origine riferimento non è stata trovata.)

2.8. Front panel connector cabling

Motherboard I/O sections A, B, C and A395A, A395B and A395C Mezzanine boards feature the Robinson Nugent P50E-068-P1-SR1-TG multi-pin connector, whose pin set is shown in the following figure:

Fig. 2.2: Multi-pin connector pin assignment

The CAEN Mod. A967 Cable Adapter allows to adapt each Robinson Nugent Multipin Connector into two 1" 17+17-pin Header-type male connectors (3M, 4634-7301) with locks through two 25 cm long flat cables.

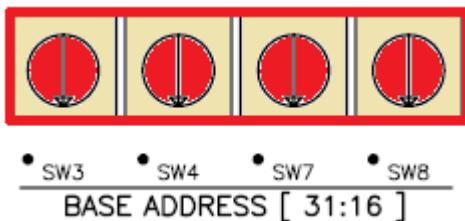


Fig. 2.3: Mod. A967 Cable Adapter

2.9. VME Base Address

Four rotary switches allows to set the VME base address of the module; such switches are placed on the component side of the Printed Board, see figure below:

Fig. 2.4: Base Address rotary switches

SW3 allow to set BA bits [31:28], SW4 allow to set BA bits [27:24], SW7 allow to set BA bits [23:20] and SW8 allow to set BA bits [19:16].

3. Operating modes

3.1. Timers

Gate/Trigger applications require the production of an output signal with programmable width (Gate), whenever an input signal (Trigger) occurs.

Gates can be produced in several ways, according to the system set up, which can be either synchronous or asynchronous.

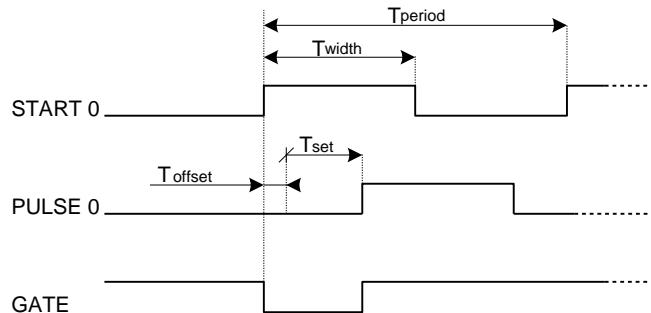
Synchronous systems:

Input signals are referred to a system clock: they can be sampled by the clock itself and the output is a gate signal (obtained with a counter) whose width (and delay) is a multiple of the clock period. If the application requires a width (and delay) of the Gate signal synchronous but with step resolution higher than the system clock period, this can be achieved by using the "User" FPGA internal PLL driven by either the system clock or by an external clock connected G0 port (see § 5.1).

Asynchronous systems:

Input signals are not referred to a system clock. As a consequence the gate signal will be generated without any time reference. It is possible to use the implementation described above, with the freedom of choosing the clock source between external or 40MHz internal. The resulting Gate signal will have stable duration, but with maximum position jitter equal to one clock period.

Such position jitter can be rejected by using the asynchronous timers present on the V1495, which allow to generate references synchronous with the occurred trigger.



3.1.1. *Timer0, Timer1*

Each timer is based on a programmable delay line. The "User" FPGA drives a STARTx pulse and, after the programmed delay, it receives the return signal PULSEx. The time difference between transmission and reception (logic implementation inside the "User" FPGA) can be used to drive a gate signal. The programming of the delay time can be done manually as binary value either via 8 bit dip switches (SW4 and SW5) or via VME register, with a 1ns step resolution (max step delay = 255ns). The software setting has higher priority with respect to the dip switches.

The following figure shows a diagram of the timers usage:

$$T_{dly} = T_{offset} + T_{set}$$

$$T_{offset} = 30 \pm 2\text{ns}$$

$$T_{set} = \text{SETBINARY} * 1\text{ns}$$

$$\text{STARTx-WIDTHMIN} = 320\text{ns} \text{ recommended} \quad (22\text{ns absolute min.})$$

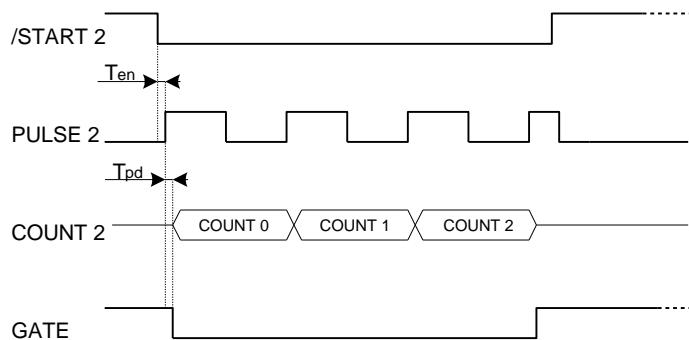
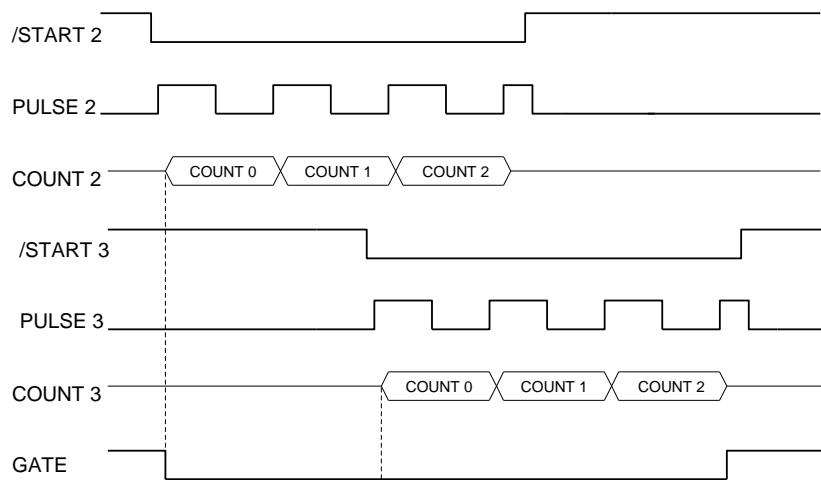

$$\text{STARTx-PERIODMIN} = 640\text{ns} \text{ recommended} \quad (46\text{ns absolute min.})$$

Fig. 3.1: Timers diagram

The use of STARTx signals with timing shorter than those recommended is possible, although the linearity on the set delay scale is no longer guaranteed.


3.1.2. Timer2, Timer3

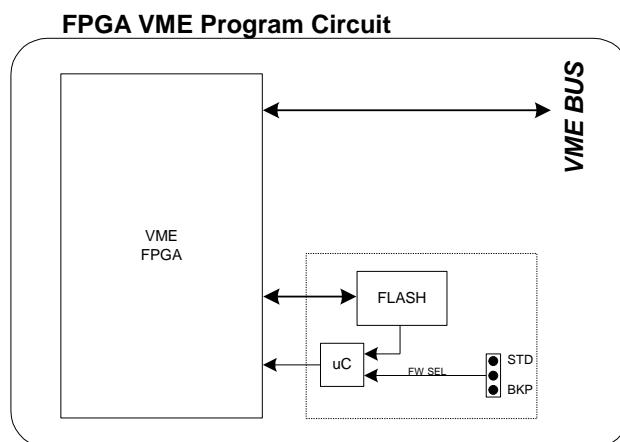
Each timer is made up of one digital circuit which produces a typical fixed time base with 10ns period and 50% duty cycle. These timers are proposed for generating any Gate pulse $> 10\text{ns}$ with a 10ns step. The following figure shows an example of a Gate generation made with Timer2 and n.3 PULSE width.

Fig. 3.2: Gate pulse example

The “User” FPGA drives a /STARTx pulse and after T_{EN} time “User” FPGA will receive a PULSEx clock signal. A counter with clock = PULSEx implemented in the “User” FPGA, allows to generate a pulse with programmable duration. It is possible to reduce to one half (5ns) the counter step by advancing the counter on both sides of PULSEx. Since the circuit is completely digital, no recovery time is necessary between one stop and the following start: it is thus possible to generate multiple gate pulses with very high rate. Timer2 and Timer3 can be used together for handling one single Gate pulse from multiple overlapped triggers.

Fig. 3.3: Timer2 and Timer3 used together for handling a Gate pulse

3.2. FPGA Programming


The programming of “Bridge” FPGA and “User” FPGA are handled by two independent microcontrollers + flash memory. The updating of the firmware contained in the flash memories does not require the use of external tools and can be executed via VME.

The flash related to “Bridge” FPGA contains the firmware dedicated to the interface of the board with the “User” FPGA and the VME bus; such firmware is developed by CAEN.

The FLASH related to the “User” FPGA USER contains the firmware developed by the User according to his own application requirements.

3.2.1. VME FPGA

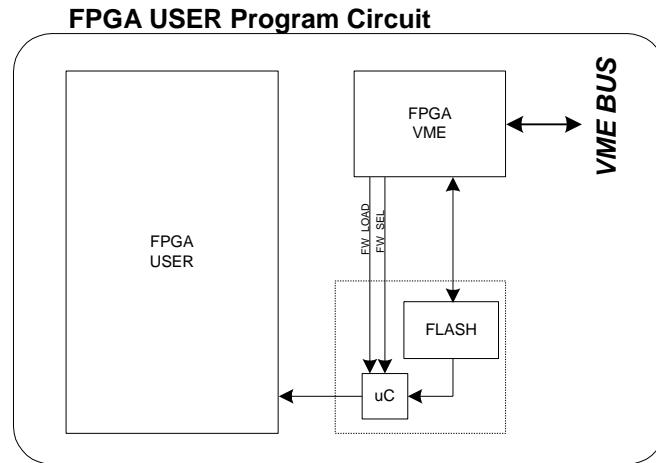

The microcontroller provides the firmware uploading at board’s power on. The flash memory contains two versions of the firmware, which can be selected manually via jumper (Standard or Backup).

Fig. 3.4: FPGA VME diagram

3.2.2. USER FPGA

The microcontroller provides the firmware uploading at board's power on. The flash memory contains one firmware image only (Standard).

Fig. 3.5: FPGA USER diagram

“Bridge” FPGA (i.e. VME FPGA) aim is to handle the operation of “User” FPGA, which can be programmed on-the-fly, i.e. without turning off the system, thus allowing quick debug operations by the Developer.

Register implemented on “Bridge” FPGA allows the following operations:

- “User” FPGA FLASH memory programming.
- “User” FPGA updating.

4. VME Interface

FPGA VME Firmware provides the following features:

- Both 16 and 32 bit data mode accesses to “User” FPGA memory space (Base + 0x1000÷0x7FFC)
- 32 bit Block transfer (BLT) from “User” FPGA. VME address space Base + 0x0000-0x0FFC is reserved for BLT from “User” FPGA; any BLT access to such space translates into a read access to Local Bus address 0x0000. V1495 DEMO2 package (see § 5.7) provides an example of BLT handling in “User” FPGA.

Note: “Bridge” FPGA Firmware releases older than 1.0 do not support:

- 32bit single accesses
- BLT accesses
- Support for VME interrupt generation requested by the “User” FPGA (see § 5.8).

Note: Interrupt feature is handled only from “Bridge” FPGA firmware release 1.2 on.

4.1. Register address map

The Address map for the Model V1495 is listed in **Errore. L'origine riferimento non è stata trovata..** All register addresses are referred to the Base Address of the board, i.e. the addresses reported in the Tables are the offsets to be added to the board Base Address.

Tab. 4.1: Address Map for the Model V1495

ADDRESS	REGISTER/CONTENT	ACCESS MODE	Read/Write
Base + 0x0000-0x0FFC	USER FPGA Block transfer	A24/A32 D16/D32/BLT	R
Base + 0x1000÷0x7FFC	USER FPGA Access ¹	A24/A32 D16/D32	R/W
Base + 0x8000	VME Control Register	A24/A32 D16/D32	R/W
Base + 0x8002	<i>reserved</i>	A24/A32 D16/D32	R
Base + 0x8004	VME Interrupt Level	A24/A32 D16/D32	R/W
Base + 0x8006	VME Interrupt Status ID	A24/A32 D16/D32	R/W
Base + 0x8008	Geo Address_Register	A24/A32 D16/D32	R
Base + 0x800A	Module Reset	A24/A32 D16/D32	W
Base + 0x800C	Firmware revision	A24/A32 D16/D32	R
Base + 0x800E	<i>Select VME FPGA Flash</i>	A24/A32 D16/D32	R/W
Base + 0x8010	<i>VME FPGA Flash memory</i>	A24/A32 D16/D32	R/W
Base + 0x8012	<i>Select USER FPGA Flash</i>	A24/A32 D16/D32	R/W
Base + 0x8014	<i>USER FPGA Flash memory</i>	A24/A32 D16/D32	R/W
Base + 0x8016	<i>USER FPGA Configuration</i>	A24/A32 D16/D32	R/W
Base + 0x8018	Scratch16	A24/A32 D16/D32	R/W
Base + 0x8020	Scratch32	A24/A32 D32	R/W
Base + 0x8100÷0x81FE	<i>Configuration ROM</i>	A24/A32 D16/D32	R

¹ FPGA VME Firmware releases older than Rel. 1.0 allow D16 accesses to Base + 0x0000÷0x7FFC memory space

4.1.1. Configuration ROM

The following registers contain some module's information according to the Table 3.2, they are D16/D32 accessible (read only):

- **OUI:** manufacturer identifier (IEEE OUI)
- **Version:** purchased version
- **Board ID:** Board identifier
- **Revision:** hardware revision identifier
- **Serial MSB:** serial number (MSB)
- **Serial LSB:** serial number (LSB)

Tab. 4.2: ROM Address Map for the Model V1495

Description	Address	Content
checksum	0x8100	
checksum_length2	0x8104	
checksum_length1	0x8108	
checksum_length0	0x810C	
constant2	0x8110	
constant1	0x8114	
constant0	0x8118	
c_code	0x811C	
r_code	0x8120	
oui2	0x8124	0x00
oui1	0x8128	0x40
oui0	0x812C	0xE6
vers	0x8130	
board2	0x8134	0x00
board1	0x8138	0x05
board0	0x813C	0xD7
revis3	0x8140	
revis2	0x8144	
revis1	0x8148	
revis0	0x814C	
sernum1	0x8180	
sernum0	0x8184	

These data are written into one Flash page; at Power ON the Flash content is loaded into the Configuration ROM.

4.1.2. VME Control Register

(Base Address + 0x8000, read/write, D16/D32)

Bit	Function
[31-1]	reserved
[0]	Interrupt Mode: 0 = Release On Register Access (RORA) Interrupt mode (default) 1 = Release On Acknowledge (ROAK) Interrupt mode

Bit [0]: this setting sets the VME interrupt removal mode.

- In RORA mode, interrupt can be removed by accessing the VME Interrupt Level register (see § 4.1.3) and disabling the active interrupt level.
- In ROAK mode, interrupt is automatically removed via an interrupt acknowledge cycle. Interrupt generation is restored by setting an Interrupt level > 0 via VME Interrupt Level register (see § 4.1.3).

4.1.3. VME Interrupt Level Register

(Base Address + 0x8004, read/write, D16/D32)

Bit	Function
[31-3]	reserved
[2-0]	Interrupt Level: 0 = interrupts are disabled (default) n = interrupts on IRQn line are enabled (n = 1,2,...7)

4.1.4. VME Interrupt Status ID Register

(Base Address + 0x8006, read/write, D16/D32)

Bit	Function
[31-0]	This register contains the 32-bit STATUS/ID that the module places on the VME data bus during the Interrupt Acknowledge cycle

4.1.5. GEO Address Register

(Base Address + 0x8008, read, D16/D32)

Bit	Function
[15-5]	reserved
[4-0]	GEO ADDRESS 4 - 0

This register allows read back of the level of GEO pins for the selected board. The register content is valid only for the VME64X board version. The register content for the VME64 version is 0x1F.

4.1.6. Module Reset Register

(Base Address + 0x800A write only, D16/D32)

A dummy access to this register allows to generate a single shot RESET of the module.

4.1.7. Firmware Revision Register

(Base Address + 0x800C, read only, D16/D32)

Bit	Function
[15-8]	X
[7-0]	Y

This register contains the firmware revision number X.Y coded on 16 bit. For instance, the REV. 1.2 register content is: 0x102

4.1.8. Scratch16 Register

(Base Address + 0x8018, D16/D32, read/write)

This register allows to perform 16 bit test accesses for test purposes.

4.1.9. Scratch32 Register

(Base Address + 0x8020, D32, read/write)

This register allows to perform 32 bit test accesses for test purposes.

4.1.10. Select VME FPGA Flash Register

(Base Address + 0x800E, read/write, D16/D32)

This register allows the “Bridge” FPGA configuration update (stored into on-board flash memory) via VME bus.

The configuration can be updated by the user by means of the CAENUpgrader software tool (developed and distributed by CAEN); see § 5.9.

4.1.11. Select USER FPGA Flash Register

(Base Address + 0x8012, read/write, D16/D32)

This register allows “User” FPGA configuration update (stored into on-board flash memory) via VME bus.

The configuration can be updated by the user by means of the CAENUpgrader software tool (developed and distributed by CAEN); see § 5.9.

4.1.12. VME FPGA Flash Memory

(Base Address + 0x8010, read/write, D16/D32)

This register allows the “Bridge” FPGA configuration update (stored into on-board flash memory) via VME bus.

The configuration can be updated by the user by means of the CAENUpgrader software tool (developed and distributed by CAEN); see § 5.9.

4.1.13. USER FPGA Flash Memory

(Base Address + 0x8014, read/write, D16/D32)

This register allows the USER FPGA configuration update (stored into on-board flash memory) via VMEBUS.

The configuration can be updated by the user by means of the CAENUpgrader software tool (developed and distributed by CAEN), see § 5.9.

4.1.14. USER FPGA Configuration Register

(Base Address + 0x8016, read/write, D16/D32)

Bit	Function
[15-1]	reserved
[0]	IMAGE_SELECT

This register allows the update of the “User” FPGA configuration. A write access to this register generates a configuration reload. The configuration image (Standard) will be uploaded into the “User” FPGA as the IMAGE_SELECT bit is set to 1 (default).

5. USER FPGA Demos and Programming

5.1. Introduction

The CAEN V1495 board houses a user-customizable FPGA (called “User” FPGA); the board is delivered with a reference design kit, loaded on the “User” FPGA; the detailed description is available in sections § 5.3 through § 5.5.1.

Developers need to mind few design rules, as listed below:

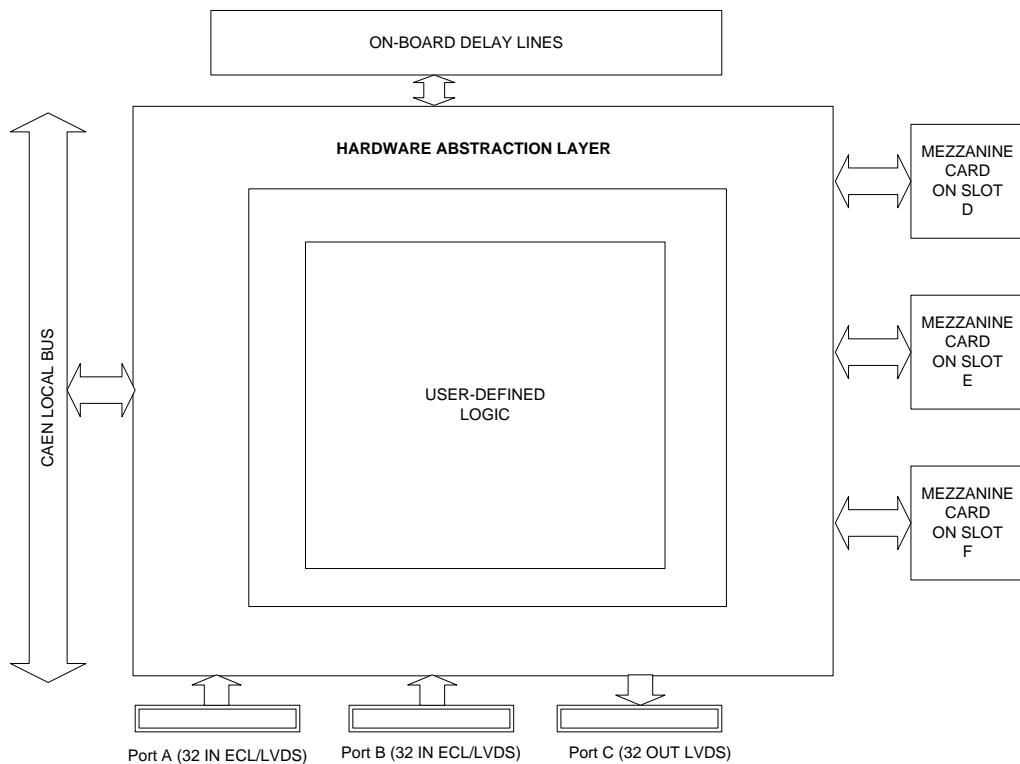
1. Register access:

- a. In case of VME access, “User” registers are mapped starting from address 0x1000 (e.g. the local register of address 0 is read back at 0x1000 by VME).
- b. A 16-bit address is available over the local bus between “Bridge” and the “User” FPGA VME. The “User” registers addresses are limited to the range 0x0000 – 0x6FFF, since the “Bridge” FPGA reserves the VME address range 0x1000 – 0x7FFF to “User” space.
- c. The address 0xC (mapped at 0x100C over the VME bus) **MUST** be implemented and readable.

The “Bridge” FPGA reads back this address to decide whether to enable the time-bomb mechanism on the running firmware or not. Particularly, bit[15] of the register **MUST** be 0 in order the time-bomb is not activated.

- d. Registers can be read back either by 16-bit address mode (single access) or by 32-bit address mode (double access). The “User” Demo (see § 5.2) implements 16-bit access only. For 32-bit access implementations examples, the developer can refer to the source code of the other “User” demos web available at the V1495 page (see § 5.2.1).

2. Clock management


- a. The “User” FPGA receives the clock from an on-board 40-MHz oscillator connected to K5 pin. This clock can be internally connected to a PLL.
- b. It is possible to provide an external clock as a reference for the internal PLL by using the G0 port as an input. G0 is physically connected to the L14 pin of the “User” FPGA, which can be used as PLL input.
- c. It is possible to generate an external clock from the internal PLL by using the G1 port as an output. G1 is physically connected to the L13 pin of the “User” FPGA, which can be used as PLL output.

5.2. “User” Demo Firmware Overview

This application allows a virtual access to the User FPGA through "Hardware Abstraction Layer", see (§ 5.3.1), and shows examples of

- delay lines use
- A, B, C, G (see § 2.5) ports interface functions
- Read/write capabilities from/to expansion boards (A395A, A395B, A395C, A395D) on E, F, G ports

The COIN_REFERENCE reference design illustrates how to use the “User” FPGA to implement a Coincidence Unit & I/O Register Unit. This design can be customized by the user in order to adapt its functionality to his own needs.

Fig. 5.1: USER FPGA block diagram

The Demo project is available at the download section of the webpage:

<http://www.caen.it/csite/CaenProd.jsp?parent=11&idmod=705>

(in case the active link above doesn't work, copy and paste it on the internet browser)

Its source code can be adapted by updating the `coin_reference.vhd` file.

5.2.1. Advanced Demo applications

Moreover, in order to help the Users to develop advanced software applications for the V1495, CAEN provides several demo applications (four applications are available so far), freely available (both source codes and documentation), at the download section of the webpage

<http://www.caen.it/csite/CaenProd.jsp?parent=11&idmod=705>

(in case the active link above doesn't work, copy and paste it on the internet browser)

These applications do not use the HAL (Hardware Abstraction Layer), like the built-in demo, in order to help the hardware interfacing. This is done in order to offer to the end user a further degree of freedom.

The applications implement the following capabilities:

- **Demo 1**
 - *Gate Pattern*
 - AND/OR function between I/Os
 - Single Read/Write access on VME
- **Demo 2**
 - *Pattern Recorder*
 - FIFO/PLL
 - Single Read/Write access on VME
 - Block Transfer Mode (BLT)
- **Demo 3**
 - *DAC*
 - I/O Expansion - A395E (DAC)
 - Single Read/Write access on VME
- **Demo 4**
 - *Gate & Delay Generator*
 - AND/OR function between I/Os
 - I/O Expansion - A395D
 - Single Read/Write access on VME
 - Prog/Free Running Delay Line (PDL/FDL)

5.3. Reference Design Kit

5.3.1. V1495HAL

The V1495 Hardware Abstraction Layer (V1495HAL) is a HDL module provided, in Verilog format at netlist level, in order to help the hardware interfacing.

5.3.2. COIN_REFERENCE Design

The COIN_REFERENCE design VHDL entity is the interface to the V1495HAL. If the User wishes to use V1495HAL to develop his own application on the V1495 platform, the VHDL entity must not be modified: this means that signals names and function of the COIN_REFERENCE entity must be used, as shown in the following table:

Tab. 5.1: COIN_REFERENCE signals

PORT NAME	DIRECTION	WIDTH	DESCRIPTION
GLOBAL SIGNALS			
NLBRES	IN	1	Async Reset (active low)
LCLK	IN	1	Local Bus Clock (40 MHz)
REGISTER INTERFACE			
REG_WREN	IN	1	Write pulse (active high)
REG_RDEN	IN	1	Read pulse (active high)
REG_ADDR	IN	16	Register address
REG_DIN	IN	16	Data from CAEN Local Bus
REG_DOUT	OUT	16	Data to CAEN Local Bus
USR_ACCESS	IN	1	Current register access is at user address space(Active high)
V1495 Front Panel Ports (PORT A,B,C,G) INTERFACE			
A_DIN	IN	32	In A (32 x LVDS/ECL)
B_DIN	IN	32	In B (32 x LVDS/ECL)
C_DOUT	OUT	32	Out C (32 x LVDS)
G_LEV	OUT	1	Output Level Select (0=>TTL; 1=>NIM)
G_DIR	OUT	1	Output Enable (0=>Output, 1=>Input)
G_DOUT	OUT	2	Out G - LEMO (2 x NIM/TTL)
G_DIN	IN	2	In G - LEMO (2 x NIM/TTL)
V1495 Mezzanine Expansion Ports (PORT D,E,F) INTERFACE			
D_IDCODE	IN	3	D slot mezzanine Identifier
D_LEV	OUT	1	D slot Port Signal Level Select (the level selection depends on the mezzanine expansion board mounted onto this port)
D_DIR	OUT	1	D slot Port Direction
D_DIN ²	IN	32	D slot Data In Bus
D_DOUT	OUT	32	D slot Data Out Bus

² The I/O channels of the A395D Mezzanine board are mapped on the 8 LSB of D_DIN, D_DOUT, E_DIN, E_DOUT, F_DIN, F_DOUT signals

PORT NAME	DIRECTION	WIDTH	DESCRIPTION
E_IDCODE	IN	3	E slot mezzanine Identifier
E_LEV	OUT	1	E slot Port Signal Level Select (the level selection depends on the mezzanine expansion board mounted onto this port)
E_DIR	OUT	1	E slot Port Direction
E_DIN	IN	32	E slot Data In Bus
E_DOUT	OUT	32	E slot Data Out Bus
F_IDCODE	IN	3	F slot mezzanine Identifier
F_LEV	OUT	1	F slot Port Signal Level Select (the level selection depends on the mezzanine expansion board mounted onto this port)
F_DIR	OUT	1	F slot Port Direction
F_DIN	IN	32	F slot Data In Bus
F_DOUT	OUT	32	F slot Data Out Bus
PDL CONFIGURATION INTERFACE			
PDL_WR	OUT	1	Write Enable
PDL_SEL	OUT	1	PDL Selection (0=>PDL0, 1=>PDL1)
PDL_READ	IN	8	Read Data
PDL_WRITE	OUT	8	Write Data
PDL_DIR	OUT	1	Direction (0=>Write, 1=>Read)
DELAY LINES AND OSCILLATORS I/O			
PDL0_OUT	IN	1	Signal from PDL0 Output
PDL1_OUT	IN	1	Signal from PDL1 Output
DLO0_OUT	IN	1	Signal from DLO0 Output
DLO1_OUT	IN	1	Signal from DLO1 Output
PDL0_IN	OUT	1	Signal to PDL0
PDL1_IN	OUT	1	Signal to PDL1
DLO0_GATE	OUT	1	Signal to DLO0 Input
DLO1_GATE	OUT	1	Signal to DLO1 Input
SPARE INTERFACE			
SPARE_OUT	OUT	12	SPARE Data Out
SPARE_IN	IN	12	SPARE Data In
SPARE_DIR	OUT	1	SPARE Direction
LED INTERFACE			
RED_PULSE	OUT	1	RED Led Pulse (active high)
GREEN_PULSE	OUT	1	GREEN Led Pulse (active high)

5.4. Interface description

5.4.1. Global Signals

The nLBRES must be used as an asynchronous reset signal by the user. An active low pulse will be generated when a write is done at the Module Reset register address (see § 4.1).

The LBCLK is a 40 MHz clock. It is the FPGA main clock.

5.4.2. REGISTER INTERFACE

The signals of the Register Interface allows to read/write into the “User” FPGA registers, which can be accessed via VME bus. The COIN_REFERENCE module shows how to implement a set of registers.

The following table shows the registers map as it is provided. Each register address is coded via constants in V1495pkg.vhd file. This file allows to modify the registers map; all registers allow D16/D32 accesses (write only, read only or read/write). Registers default value is the value after a reset for write only and read/write registers; read only registers return the status of the signals read by the FPGA and have no default value.

The Register Interface allows to abstract the VME registers access. The User can access a simple register interface: two signals (REG_WREN e REG_RDEN) are pulses with a one clock cycle duration which enables respectively a write or a read access to a register. REG_ADDR signal represents the register address.

Writing into a register:

In case of a write operation into a register via VME, the 16 bit datum is available through the REG_DIN signal. The datum is guaranteed stable on the CLK leading edge where REG_WREN is active. The register access is valid only when USR_ACCESS is at logic level = 1.

Reading from a register:

In case of a read operation from a register via VME, the datum to be returned must drive the REG_DOUT and be stable on the CLK leading edge, where REG_RDEN is active. The register access is valid only when USR_ACCESS is at logic level = 1.

5.4.3. V1495 Front Panel Ports (PORT A,B,C,G) INTERFACE

These signals allows to handle the interface with the motherboard ports A, B, C, G. A_DIN and B_DIN signals show the logic level of A and B ports (32 bit, input only).

The output logic level on port C can be set via C_DOUT signal.

The logic level on port G (LEMO connectors) can be set via G_LEV signal; the direction via G_DIR, the datum to be written via G_DOUT or to be read via G_DIN.

5.4.4. V1495 Mezzanine Expansion Ports (PORT D,E,F) INTERFACE

These signals allows to handle the interface with the piggy back board ports D, E, F.
The following table explains the available signals:

Tab. 5.2: V1495 Mezzanine Expansion Ports signals

Port:	Signal:	Function:	Applies to:
D	D_DIR	Selects direction	Bidirectional port
	D_DIN	Read the logic level	Input/Bidirectional
	D_DOUT	Set the logic level	Output/Bidirectional
	D_IDCODE	Read IDCODE for piggy back identification	All
	D_LEV	Set the logic level	Output/Bidirectional
E	E_DIR	Selects direction	Bidirectional port
	E_DIN	Read the logic level	Input/Bidirectional
	E_DOUT	Set the logic level	Output/Bidirectional
	E_IDCODE	Read IDCODE for piggy back identification	All
	E_LEV	Set the logic level	Output/Bidirectional
F	F_DIR	Selects direction	Bidirectional port
	F_DIN	Read the logic level	Input/Bidirectional
	F_DOUT	Set the logic level	Output/Bidirectional
	F_IDCODE	Read IDCODE for piggy back identification	All
	F_LEV	Set the logic level	Output/Bidirectional

5.4.5. PDL Configuration Interface

PDL Configuration Interface signals are as follows:

Tab. 5.3: PDL Configuration Interface signals

PDL_WR	OUT	1	Write Enable
PDL_SEL	OUT	1	PDL Selection (0=>PDL0, 1=>PDL1)
PDL_READ	IN	8	Read Data
PDL_WRITE	OUT	8	Write Data
PDL_DIR	OUT	1	Direction (0=>Write, 1=>Read)

5.4.6. Delay Lines and Oscillators I/O

Delay Lines and Oscillators signals are as follows (see also § 5.6.5 and § 5.6.6):

Tab. 5.4: Delay Lines and Oscillators signals

PDL0_OUT	IN	1	Signal from PDL0 Output
PDL1_OUT	IN	1	Signal from PDL1 Output
DLO0_OUT	IN	1	Signal from DLO0 Output
DLO1_OUT	IN	1	Signal from DLO1 Output
PDL0_IN	OUT	1	Signal to PDL0
PDL1_IN	OUT	1	Signal to PDL1 Input
DLO0_GATE	OUT	1	Signal to DLO0 Input
DLO1_GATE	OUT	1	Signal to DLO1 Input

5.4.7. SPARE Interface

These signals allow to set and read the status of SPARE pin present on the board.

Tab. 5.5: SPARE Interface signals

SPARE_OUT	OUT	12	SPARE Data Out
SPARE_IN	IN	12	SPARE Data In
SPARE_DIR	OUT	1	SPARE Direction

5.4.8. LED Interface

These signals, when active for one clock cycle, allow to generate a blink of the relevant Led.

Tab. 5.6: LED Interface signals

RED_PULSE	OUT	1	RED Led Pulse (active high)
GREEN_PULSE	OUT	1	GREEN Led Pulse (active high)

An example of LED programming is provided in the *V1495 User Demo Firmware* downloadable from CAEN web site at:

[Home / Products / Modular Pulse Processing Electronics / VME / I/O Registers / V1495](http://www.caen.it/Products/Modular_Pulse_Processing_Electronics/VME/I/O_Registers/V1495)

The user can refer to lines 217/218 of the code in the *SRClv1495usr_demo\coin_reference.vhd* file: only the GREEN_PULSE is managed and it is activated when the internal EXT_GATE signal is enabled.

5.5. Reference design description

The reference design preloaded into the "User" FPGA is given as a design guide. It is a full functional application of the usage of the board as a coincidence and/or I/O register unit. This reference design give access to A,B,C,G ports. So no mezzanine expansion cards are needed in order to use this design.

The MODE register can be used to set the preferred operating mode. When the board is switched on, the default operating mode is I/O Register mode.

In I/O Register Mode, C port is directly driven by the C_CONTROL register. The coincidence is anyway still active so that a pulse is generated on G port when a coincidence event is detected.

In Coincidence Mode, the C port is used to report the coincidence operator on A and B port. In this case the C port can be masked through a mask register (C_MASK).

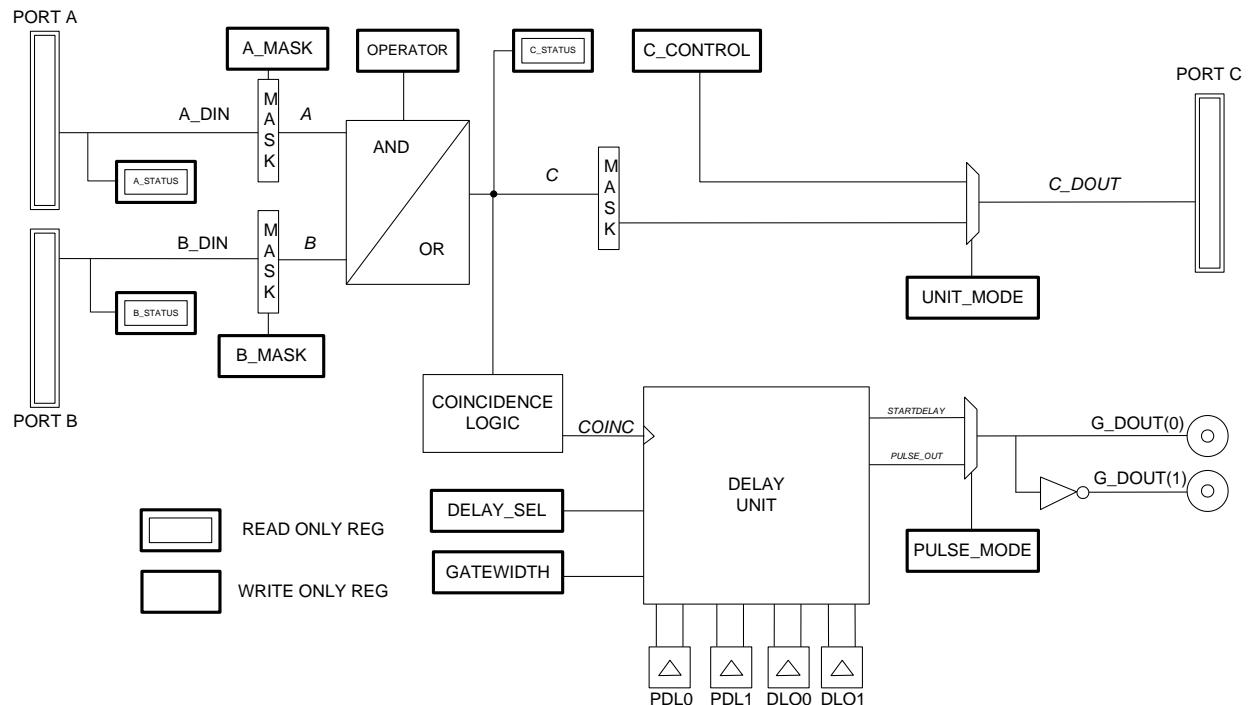
A gate pulse is generated on G port when data patterns on input ports A and B satisfy a trigger condition.

The trigger condition implemented in this reference design is true when a bit-per-bit logic operation on port A and B

is true. The logic operator applied to Port A and B is selectable by means of a register bit (MODE Register Bit 4).

If MODE bit 4 is set to '0', an AND logic operation is applied to corresponding bits in Port A and B (i.e. A(0) AND B(0), A(1) AND B(1) etc.).

In this case, a trigger is generated if corresponding A and B port bits are '1' at the same time.


If MODE bit 4 is set to '1', an OR logic operation is applied to corresponding bits in Port A and B (i.e. A(0) OR B(0), A(1) OR B(1) etc.).

In this case, a trigger is generated if there is a '1' on one bit of either port A or B.

Port A and B bits can be singularly masked through a register, so that a '1' on that bit doesn't generate any trigger.

Expansion mezzanine cards can be directly controlled through registers already implemented in this design.

The expansion mezzanine is identified by a unique identification code that can be read through a register.

Tab. 5.7: Front Panel Ports Interface Diagram

Tab. 5.8 reports the register map of the “User” FPGA reference design (COIN_REFERENCE).

The addresses listed in the table are offsets to be added to the board's VME Base Address (VBA).

For example: in order to have a read of A_STATUS_L, you need to perform a read cycle over the VMEbus at address 0x32101000, assuming the board has 0x32100000 as VBA.

Tab. 5.8: COIN_REFERENCE register map

NAME	ADDRESS	DATA SIZING	ACCESS	NOTES	DEFAULT
A_STATUS_L	0x1000	D16/D32	RO	Port A status. This register reflects A[15:0] bit status.	
A_STATUS_H	0x1002	D16/D32	RO	Port A status. This register reflects A[31:16] bit status.	
B_STATUS_L	0x1004	D16/D32	RO	Port B status. This register reflects B[15:0] bit status.	
B_STATUS_H	0x1006	D16/D32	RO	Port B status. This register reflects B[31:16] bit status.	
C_STATUS_L	0x1008	D16/D32	RO	Port C status. This register reflects C[15:0] bit status.	
C_STATUS_H	0x100A	D16/D32	RO	Port C status. This register reflects C[31:16] bit status.	
A_MASK_L	0x100C(*)	D16/D32	WO	Port A mask. This register masks A[15:0]. Mask bit is active low.	X"FFFF"
A_MASK_H	0x100E	D16/D32	WO	Port A mask. This register masks A[31:16]. Mask bit is active low.	X"FFFF"
B_MASK_L	0x1010	D16/D32	WO	Port B mask. This register masks	X"FFFF"

NAME	ADDRESS	DATA SIZING	ACCESS	NOTES	DEFAULT
				B[15:0]. Mask bit is active low.	
B_MASK_H	0x1012	D16/D32	WO	Port B mask. This register masks B[31:16]. Mask bit is active low.	X"FFFF"
C_MASK_L	0x1014	D16/D32	WO	Port C mask. This register masks C[15:0]. Mask bit is active low.	X"FFFF"
C_MASK_H	0x1016	D16/D32	WO	Port C mask. This register masks C[31:16]. Mask bit is active low.	X"FFFF"
GATEWIDTH	0x1018	D16/D32	WO	Gate signal width. This number represents a multiple of the selected delay line period (see detailed description)	X"0004"
C_CONTROL_L	0x101A	D16/D32	WO	Port C control. When the port C is configured to be an output under register control (see MODE register), the status of C[15:0] is controlled by this register.	X"0000"
C_CONTROL_H	0x101C	D16/D32	WO	Port C control. When the port C is configured to be an output under register control (see MODE register), the status of C[31:16] is controlled by this register.	X"0000"
MODE	0x101E	D16/D32	WO	It configures the behaviour of the system: MODE[1:0]: DELAY SEL MODE[3]: UNIT_MODE '0': Coincidence Unit '1': I/O Register MODE[4]: OPERATOR '0': C= A AND B; '1': C= A OR B; MODE[5]: PULSE_MODE See Description	X"0008"; -- Default : I/O Register Mode.
SCRATCH	0x1020	D16/D32	RW	This register is available to test read and write to a register.	X"5A5A"
G CONTROL	0x1022	D16/D32	W	Only Bit 0 (G_CONTROL(0)) is used in this reference design. It can be used to select G output level: '0': TTL '1': NIM	X"0000"
D_CONTROL_L	0x1024	D16/D32	RW	With A395D [bit1=data bus direction]: 0 = OUT; 1 = IN [bit0=mezzanine output level]: 0 = TTL; 1 = NIM [bit15..2]: reserved	X"0000"
D_CONTROL_H	0x1026	D16/D32	RW	reserved	X"0000"
D_DATA_L	0x1028	D16/D32	RW	D port Data [15:0] Read from IN Write to OUT	X"0000"
D_DATA_H	0x102A	D16/D32	RW	D port Data [31:16] Read from IN Write to OUT	X"0000"
E_CONTROL_L	0x102C	D16/D32	RW	With A395D [bit1=data bus direction]: 0 = OUT; 1 = IN [bit0=mezzanine output level]: 0 = TTL; 1 = NIM [bit15..2]: reserved	X"0000"

NAME	ADDRESS	DATA SIZING	ACCESS	NOTES	DEFAULT
E_CONTROL_H	0x102E	D16/D32	RW	reserved	X"0000"
E_DATA_L	0x1030	D16/D32	RW	E port Data [15:0] Read from IN Write to OUT	X"0000"
E_DATA_H	0x1032	D16/D32	RW	E port Data [31:16] Read from IN Write to OUT	X"0000"
F_CONTROL_L	0x1034	D16/D32	RW	With A395D [bit1=data bus direction]: 0 = OUT; 1 = IN [bit0=mezzanine output level]: 0 = TTL; 1 = NIM [bit15..2]: reserved	X"0000"
F_CONTROL_H	0x1036	D16/D32	RW	reserved	X"0000"
F_DATA_L	0x1038	D16/D32	RW	F port Data [15:0] Read from IN Write to OUT	X"0000"
F_DATA_H	0x103A	D16/D32	RW	F port Data [31:16] Read from IN Write to OUT	X"0000"
REVISION	0x103C	D16/D32	RW	Firmware revision . For example, the register content for release 1.0 is X"0100".	X"XXYY"
PDL_CONTROL	0x103E	D16/D32	RW	Bit 0 allows to either set the PDL delay; 0 = delay set via VMEbus (content of PDL_DATA register) 1 = delay set via on-board switches (switch value is content of PDL_DATA register) [bit15..1]: reserved	X"0001"
PDL_DATA	0x1040	D16/D32	RW	Programmable delay line setting	X"0000"
D_IDCODE	0x1042	D16/D32	RO	Read Slot D mezzanine ID Code. ID Code is X"0007" if no mezzanine is plugged.	
E_IDCODE	0x1044	D16/D32	RO	Read Slot E mezzanine ID Code. ID Code is X"0007" if no mezzanine is plugged	
F_IDCODE	0x1046	D16/D32	RO	Read Slot F mezzanine ID Code. ID Code is X"0007" if no mezzanine is plugged	

(*)Note: In the “User” Demo Firmware, register address 0x100C is not readable back from VME bus. It is anyway read back by the “Bridge” FPGA at the boot of the board with a value of 0, in conformity with the relevant design rule (see § 5.1)

If you use the COIN_REFERENCE design, the mapping in **Tab. 5.8** is implemented by the HAL. So, if you want to drive A395D output 7, you need to drive the X_DOUT[7]. The table specifically refers to the case you start your design from the online demos which doesn't use the HAL abstraction layer. In that case, you need to drive the physical mezzanine I/Os directly and to take into account the mapping table for correspondence.

5.5.1. Mezzanine board interfacing

The Reference Design can be used to interface with A395A-B-C-D mezzanines (interface with A395E is not supported; see § 5.2.1); when one mezzanine board is plugged into either D,E,F port, then it is possible to:

- Select I/O Direction, logical level (NIM/TTL), through x_CONTROL registers (D_CONTROL, E_CONTROL or F_CONTROL, depending on which port the mezzanine card is plugged into)
- Read/Write data from/to mezzanine inputs: read/write register x_DATA_L or x_DATA_H (x = D,E or F, depending on which port the mezzanine card is plugged into).

The mezzanine port directions can be set through x_CONTROL register, therefore if x_CONTROL[1] = 0, all mezzanine card ports are output, all inputs when such bit is set to 1.

Moreover, with A395D mezzanine, the ports can be individually used also as inputs even if the common I/O direction is set to output, since the A395D output stage has a recessive state (logical level 0). Therefore, if x_CONTROL[1] is set to 0 (all ports are outputs), but, for instance, x_DOUT[0] is driven to 0, then it is possible to read port 0 value into corresponding x_DIN[0] bit; in this case, 50Ohm termination on corresponding port (through internal switches) must be enabled. The A395D mezzanine card has a special pinout assignment, and there is not a direct correspondence between VHDL port signal and mezzanine channels; the following table explains the correspondence between A395D channels and the Mezzanine Expansion Ports lines (see § 5.3.2):

Tab. 5.9: A395D channels vs. Mezzanine Expansion Ports lines

Channel	Slot Data In Bus	Slot Data Out Bus
0	2	0
1	18	16
2	3	1
3	19	17
4	14	12
5	30	28
6	15	13
7	31	29

Examples of signal reading/driving with A395D:

1. In order to read the channel 5 of a mezzanine A395D inserted into the slot D, which is configured as input via the configuration bit D_CONTROL (1), in the code it is necessary to read the port status D_IN (30).
2. In order to drive the channel 5 of a mezzanine A395D inserted into the slot D, which is configured as an output via the configuration bits D_CONTROL (1), in the code it is necessary to write the port status D_OUT (28).

5.6. REGISTER DETAILED DESCRIPTION

5.6.1. V1495 Front Panel Ports Registers (PORT A,B,C,G)

The Front Panel ports (A,B,C,G) can be configured and accessed using a set of registers:

The x_MASK_y (x can be A,B,C; y can be L or H) registers can be used to selectively mask a bit of a port. Each status register is split into two 16 bit register (MASK_L corresponds to MASK[15:0], while MASK_H corresponds to MASK[31:16]). There is not a MASK register associated with G port. Each bit of the input ports (A,B) mask registers are internally used in a logic AND operation with the corresponding bit of the port, so it is an active low mask bit. For instance, when A_MASK_L[0] is set to '0', the A[0] bit is internally masked (logic '0').

Each bit of the output port (C) mask register is internally used in a logic AND operation with the corresponding bit of the internal signal, so it is an active low mask bit. For instance, when C_MASK_L[0] is set to '0', the C[0] bit is masked (output bit is stuck at '0').

The x_STATUS_y (x can be A,B,C; y can be L or H) registers can be used to read back each port bit. Each status register is split into two 16 bit register (STATUS_L corresponds to STATUS[15:0], while STATUS_H corresponds to STATUS[31:0]). There is not a STATUS register associated with G port. The x_STATUS_y register reflects the status of the unmasked input and output ports.

A control register (C_CONTROL) is available to set the C port when the board is configured in I/O register mode.

5.6.2. V1495 Mezzanine Expansion Ports Registers (PORT D,E,F)

The mezzanine expansion ports (D,E,F) can be configured and accessed using a set of registers:

In this reference design, no mask register is implemented for the expansion ports.

The x_DATA_y (x can be D,E,F; y can be L or H) registers can be used to read back each port bit. Each status register is split into two 16 bit register (D_DATA_L corresponds to D[15:0], while D_DATA_H corresponds to D[31:16]). The expansion ports can be bidirectional. In case the port is configured as an output, the register value set the port value. In case the port is configured as an input, the register content reflects current port value.

A x_CONTROL register (x can be D,E,F) is available to set the corresponding port direction and logic level selection.

5.6.3. Delay Selection

The selection of the asynchronous timer is made through the MODE register by means of the DELAY_SEL bit (MODE[1:0]).

The selection of the delay line is made according to the following table:

Tab. 5.10: Selection of the delay line

MODE[1]	MODE[0]	DELAY LINE
0	0	PDL0
0	1	PDL1
1	0	DLO0
1	1	DLO1

5.6.4. PDL DELAY VALUE SETTING AND READBACK

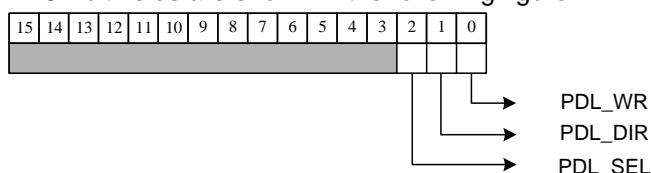
The programmable delay lines chip available on board can be programmed with a specific delay using :

on-board 8 bit dip-switch (SW6 for Delay 0 and SW5 for Delay1 on motherboard)
via VMEbus

Two registers are available to configure PDLs:

PDL_CONTROL

PDL_DATA


PDL_CONTROL is used to:

Select target PDL for read/write operations

Enable delay update

Select programming mode (via VME register or by on-board switches)

The PDL_CONTROL bit fields are shown in the following figure:

Fig. 5.2: PDL_CONTROL bit fields

PDL_WR = '1' enables the updating of the PDL delay value: in this way, the delay value set either via dip switch or via PDL_DATA register is automatically loaded. By setting this bit to 0, the delay value cannot be changed.

PDL_DIR allows to select the source of data for PDL programming:

0: the selected PDL has as delay value on its parallel programming bus the dip switch value.

1: the selected PDL has as delay value on its parallel programming bus the PDL_DATA register 8 LSB

PDL_SEL allows to select one of the PDL's (PDL0 and PDL1) for read/write operations.

PDL_DATA register is used to:

Write the delay value for the next delay update via VMEbus

Read the on-board switch status

Examples:

updating of PDL0 delay via switch: the default value in the PDL_CONTROL allows to update the delay directly via dip switch just after the board turning ON; each change in the dip switch status set immediately a new delay value.

The sequence to be followed is:

Step 1: write 0x1 in the PDL_CONTROL register

Step2: update the dip switches value

B) updating of PDL1 delay via switch:

Step 1: write 0x5 in the PDL_CONTROL register

Step 2: update the dip switches value

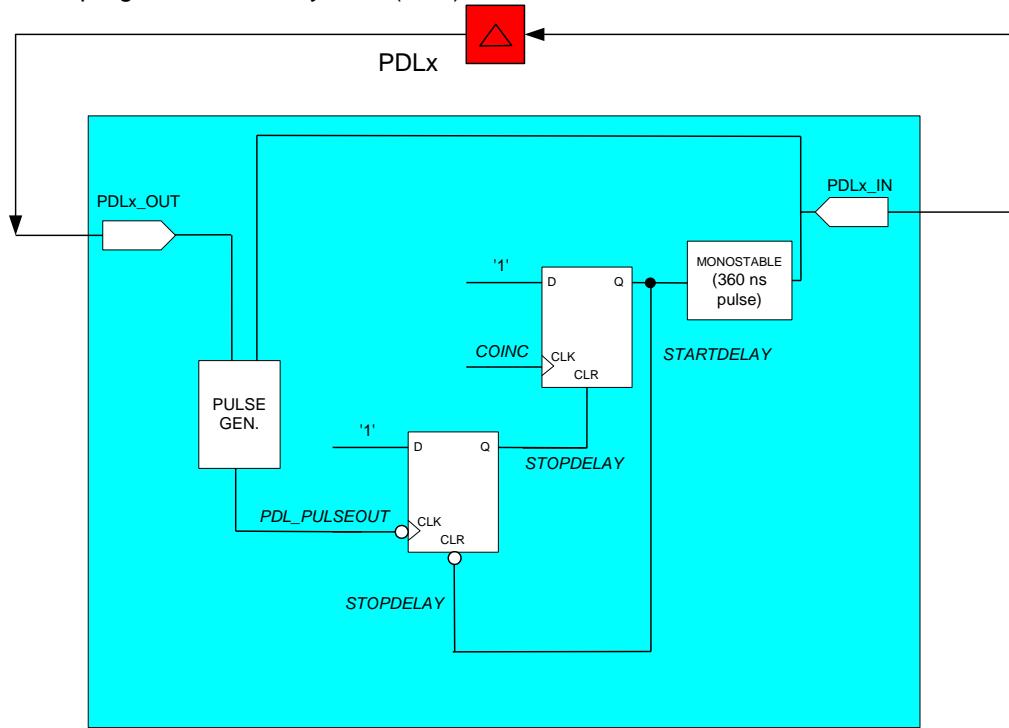
C) updating of PDL0 delay via VMEbus:

Step 1: write 0x3 in the PDL_CONTROL register

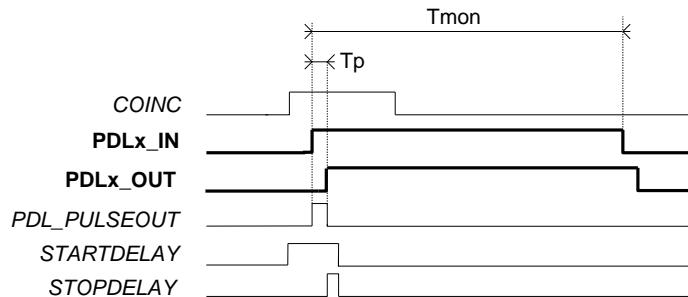
Step2: write the delay value in the PDL_DATA register

D) updating of PDL1 delay via VMEbus:

Step 1: write 0x7 in the PDL_CONTROL register


Step2: write the delay value in the PDL_DATA register

GATE WIDTH (USING Delay Line Oscillators)


The GATEWIDTH register can be used to set the gate signal width on the G port (see Delay Unit using DLOs, see § 5.6.6).

5.6.5. Delay Unit using PDLs

The following diagram shows the implementation of the **DELAY_UNIT** using the one of the two programmable delay lines (PDL) available on the boards.

Fig. 5.3: Delay Unit with PDLs

Fig. 5.4: PDLs Delay line timing

The pulse width generated using PDLs (T_p) can be adjusted setting the PDL delay using either on-board dip switches or through register.

When a coincidence occurs (leading edge of COINC signal) the STARTDELAY signal becomes active (high). STARTDELAY triggers a monostable in order to generate a pulse with a duration large enough to ensure maximum linearity performance of the. This value should be more than 320 ns PDL (see 3D3428 component datasheet). The selected value in the reference design is 360 ns.

The PDL_PULSEOUT internal signal is generated as the logic OR of PDL_IN and PDL_OUT, so generating a pulse whose width is proportional to the PDL actual delay. The PDL_PULSEOUT signal falling edge is used to reset the flip-flop state.

The pulse width (T_p) is:

$$T_p = T_{pd} + T_{pf}$$

Where T_{pd} is the delay of the selected PDL. (programmable via VME or by on-board dip-switches, whichever mode is enabled).

T_{pf} is the delay introduced by the FPGA pad and internal logic.

The maximum pulse width is limited by the PDL maximum delay, in this case.

5.6.6. Delay Unit using DLOs

The following diagram shows the implementation of the DELAY_UNIT using two oscillators based on delay lines (DLO) present on the board.

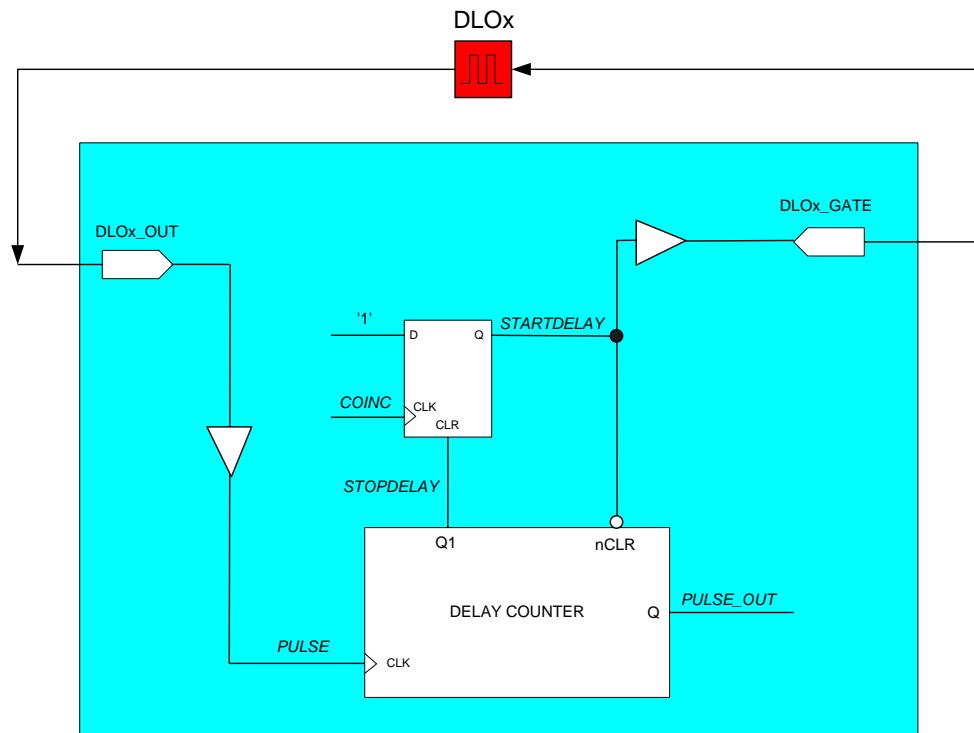


Fig. 5.5: Delay Unit with DLOs

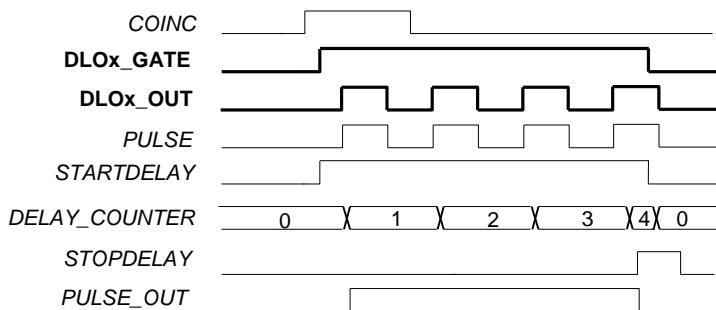


Fig. 5.6: DLOs Delay line timing

When a coincidence occurs (leading edge of COINC signal) the STARTDELAY signal becomes active (high).

STARTDELAY enables the oscillator on external delay line (DLOx) selected via MODE register. At the same time the DELAY_COUNTER is enabled. The PULSE signal leading edge increases the counter until the value set via GATEWIDTH register is reached. The PULSE signal corresponds, in this reference, with the selected PDL output. On the first PULSE leading edge after the coincidence, PULSE_OUT is activated high and is kept high until a time = GATEWIDTH times the period of the selected DLO. The period in this case is constant.

The maximum pulse width is limited by the GATEWIDTH counter: in the case of this reference design the GATEWIDTH register is 16 bit wide, so a maximum width of $65536 \cdot T_d$ (T_d is the intrinsic delay of the selected DLO).

5.7. Quartus II Web Edition Project

Note: the User Demo described in this section is suitable for boards running “Bridge” FPGA Firmware Rel. 1.0 and newer.

In order to upgrade to FPGA Firmware Rel. 1.0 applications for the FPGA User developed originally on V1495 boards running older firmware releases (for example “Bridge” FPGA Firmware Rel. 0.3 and V1495 USER DEMO Quartus II project Rel. 1.1):

- Download the V1495 VME FPGA Firmware Rel. 1.0
- Upgrade “Bridge” FPGA firmware to Rel. 1.0 via VME, through the CAENUpgrader tool (see § 5.9)

In order to generate a firmware for the “User” FPGA through Altera Quartus II software, compatible with V1495 VME FPGA Firmware Rel. 1.0:

- Download the V1495 USER DEMO Quartus II project Rel. 2.0 and follow the steps described in this section
- At this point applications developed under FPGA Firmware Rel. 0.3 (and older) V1495 USER DEMO Quartus II project Rel. 1.1 (and older) must be updated by incrementing all internal registers address by 0x1000; for instance 0x00FC becomes 0x10FC.

The “User” FPGA is programmable and customizable; the module is delivered configured with the Demo application described by sections § 5 through § 5.5.1.

The freely available Altera Quartus II (downloadable on the Altera Web site) software must be used in order to generate a user firmware for the “User” FPGA. It includes the source of VHDL reference design, which can be modified according to the description provided with the manual, in order to modify the card functionalities.

The tool provides a complete pinout of the FPGA; it is also enabled to generate the file type of programming (RBF format) used for the FLASH programming.

This software tool requires the Quartus II Web Edition rel. 8.0 (and newer) and can be freely downloaded the download section of the webpage

<http://www.caen.it/csite/CaenProd.jsp?parent=11&idmod=705>

(in case the active link above doesn't work, copy and paste it on the internet browser)

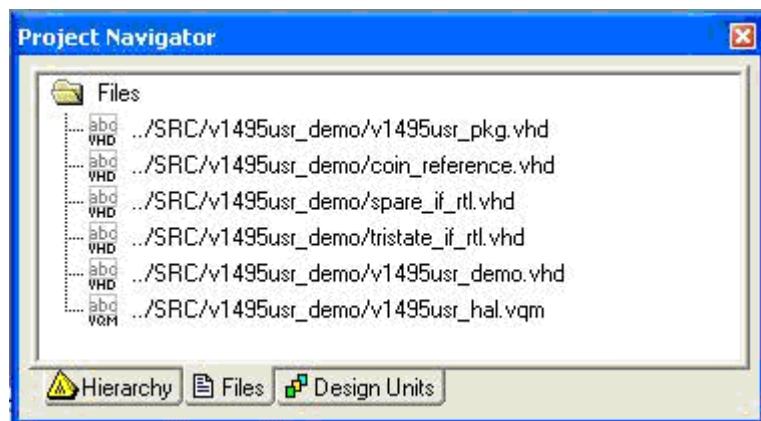
Quartus II manual is available at www.altera.com/ website

The following instructions require the User knowledge of the typical project flow for generating the firmware for an ALTERA FPGA.

Once the Quartus II Web Edition is installed on the PC host, in order to open the new project launch the program, then select in the upper toolbar the path
File>Open Project>FIT...

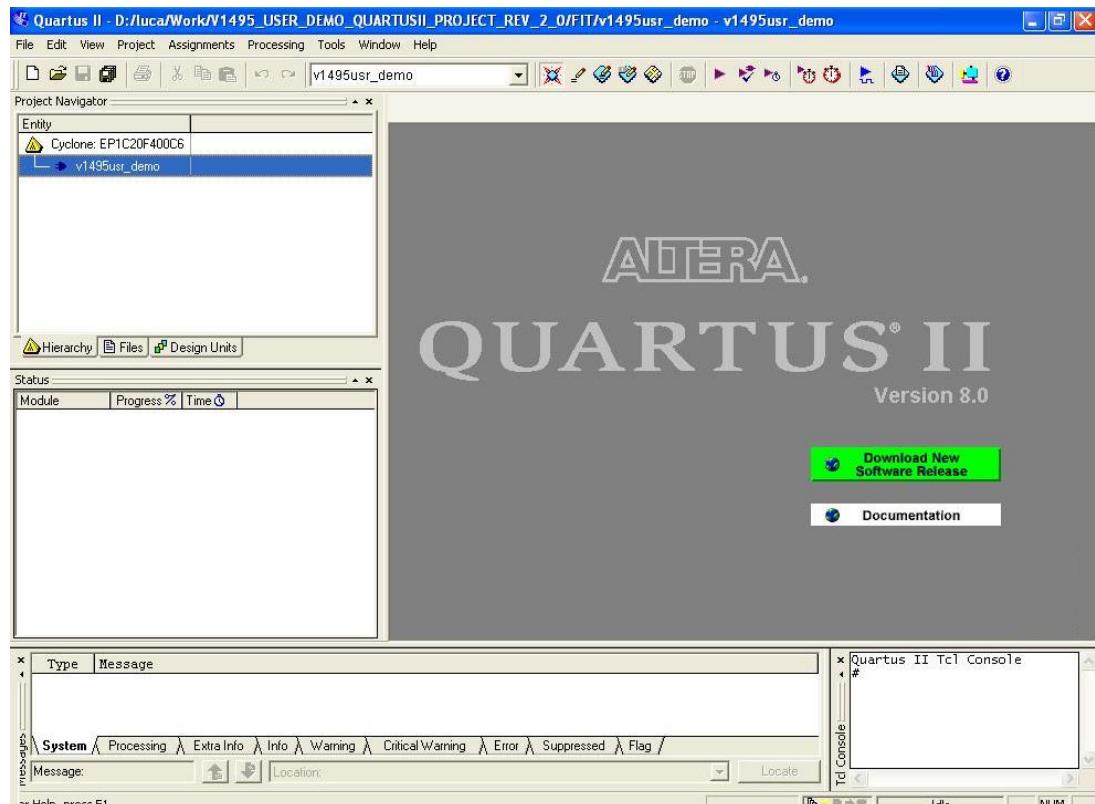
Fig. 5.7: Quartus II project browser

browse the file project v1495usr_demo.qpf

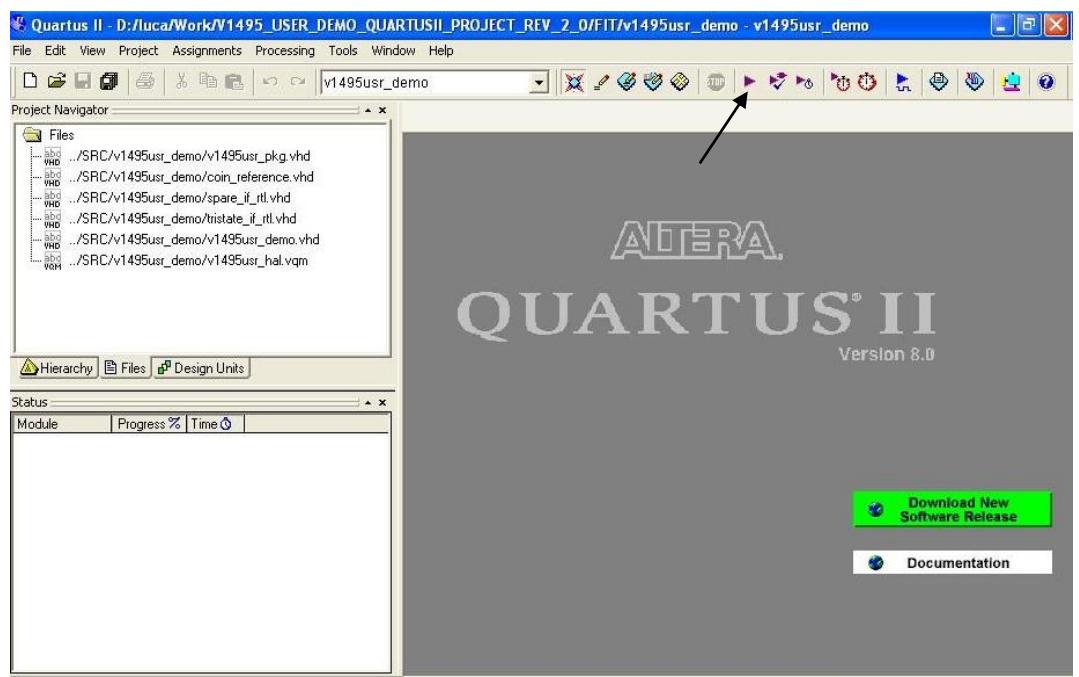

Once the project is open, the Project Navigator shows the following information:

There are 5 VHDL files and a Verilog netlist:

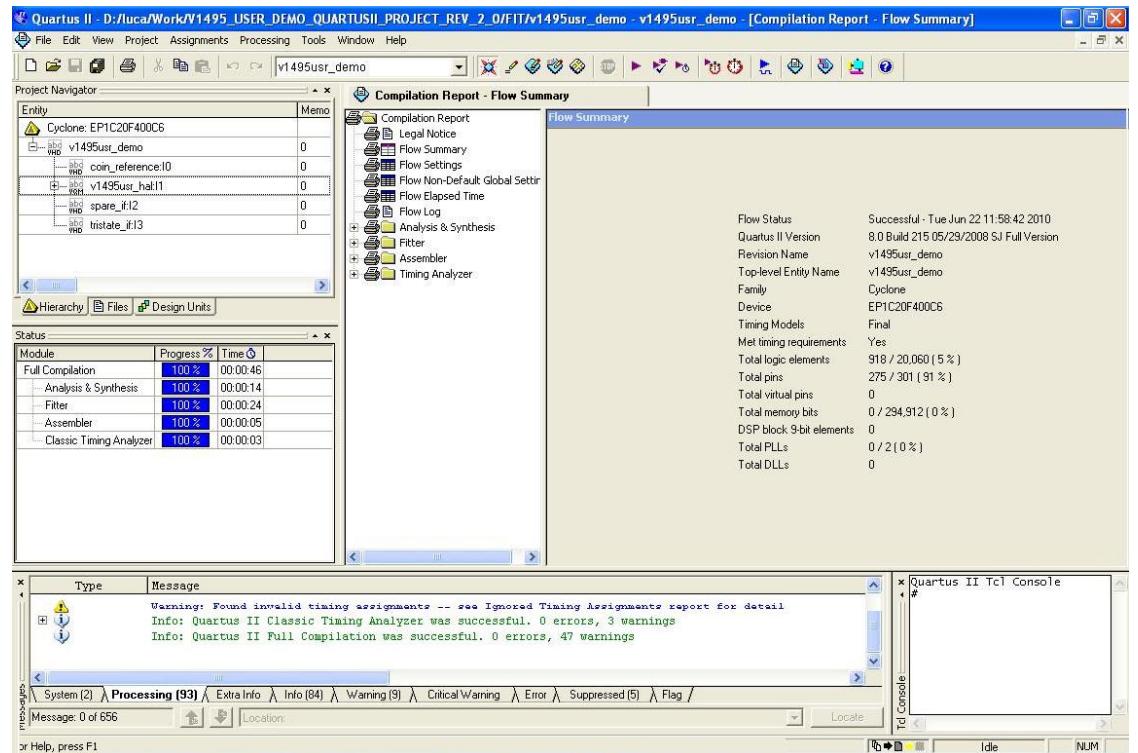
The reference design is included in the coin_reference.vhd file.


The other files provide support to the project and shall not be modified by the developer.

HAL (Hardware Abstraction Layer) is implemented on the netlist Verilog v1495usr_hal.vqm.


Fig. 5.8: Quartus II netlist

The first time the project is launched the hierarchy includes only the name of the head of the project (v1495usr_demo). At the end of the project flow the whole hierarchical structure of the project is shown.


Fig. 5.9: Quartus II hierarchical structure

In order to generate a new programmation file it is necessary to launch the compiler, by clicking on the purple “play” button on the tool bar (see arrow).

Fig. 5.10: Quartus II compiler launching

Quartus at this point launches in sequence the steps of the flow chart (synthesis, fitting, place&route), then shows the correct compiling and the following screen:

Fig. 5.11: Quartus II compiling summary

At this point an updated RBF file is generated in the project directory. This file can be used for updating the firmware.

5.8. VME Interrupt requests from USER FPGA

Interrupt requests on VMEbus can be performed by the “User” FPGA by asserting low its A7 physical pin. In all the “User” FPGA demo projects provided by CAEN (see § 5.2 and § 5.2.1), this pin is associated to the nINT port of the top level VHDL. After nINT signal is asserted low, the “Bridge” FPGA enables the VME interruption line (IRQn) according to the VME Interrupt Level register setting (see § 4.1.3).

In order to implement an interrupt logic in CAEN “User” FPGA demo projects, a code modification is needed as described below.

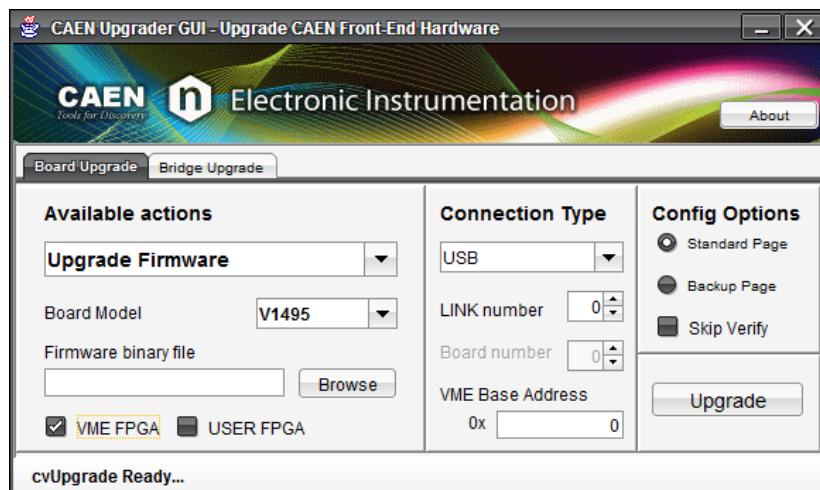
- For the “User” Demo (see § 5.2):

- Modify the *v1495usr_demo.vhd* file (project subfolder \SRC\v1495usr_demo) by replacing the current content of the 547 line with

nINT => open,

- Drive nINT according to the customized interrupt logic.

- For the advanced demo applications (see § 5.2.1), drive the nINT output port in the *lb_int.vhd* file (within the project subfolder \src) with the required interrupt logic.


5.9. Firmware upgrade

It is possible to upgrade the “Bridge” FPGA (i.e VME FPGA) and the “User” FPGA firmware (see § 1.1) via VME by writing the FLASH through the CAENUpgrader software tool.

The program installation packages and the documentation (refer to [RD1]) are available for download on CAEN website (www.caen.it) at:

Home / Products / Firmware/Software / Digitizer Software / Configuration Tools / CAENUpgrader

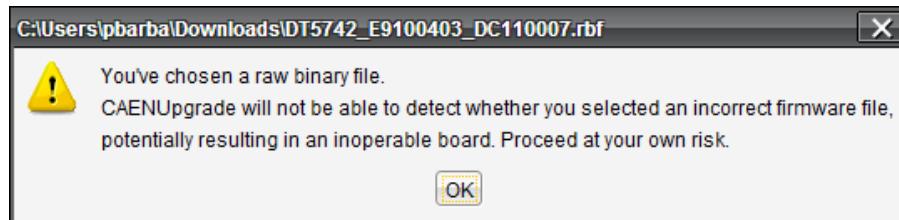

Note: Log-in is required in order to download the software package.

Fig. 5.12: CAENUpgrader “Upgrade Firmware” menu

The firmware files for the V1495 FPGA have .RBF extension. Concerning the “User” FPGA, they can be generated upon the user development, as described at § 5.7, or they are User Demo releases provided by CAEN and available on the website at the V1495 web page (see § 5.2 and § 5.2.1). Firmware updates for the “Bridge” FPGA are also available at the same web page.

IN ORDER TO PREVENT FUNCTIONAL DAMAGES, THE USER IS RECOMMENDED TO PAY ATTENTION AT SELECTING THE CORRECT DESTINATION FPGA FOR THE FILE FIRMWARE TO UPLOAD, AS CAENUPGRADER DOES NOT IMPLEMENT ANY CONTROL ON RBF FILES (see Fig. 5.13)!

Fig. 5.13: CAENUpgrader warning message with RBF files

Exclusively for the “Bridge” FPGA, the V1495 hosts two firmware copies onto two different pages of the on-board FLASH, referred to as Standard (STD) and Backup (BKP) image of the factory firmware. Selecting which firmware copy to load on the “Bridge” FPGA at power-on, is made through a dedicated on-board jumper (see § 3.2.1).

IT IS STRONGLY SUGGESTED TO OPERATE THE BOARD UPON THE STD COPY OF THE “BRIDGE” FPGA FIRMWARE. UPGRADES ARE SO RECOMMENDED ONLY ON THE STD PAGE OF THE FLASH. THE BKP COPY IS TO BE INTENDED ONLY FOR RECOVERY USAGE. IF BOTH PAGES RESULT CORRUPTED, THE USER WILL NO LONGER BE ABLE TO UPLOAD THE FIRMWARE VIA VMEbus AGAIN AND THE BOARD NEEDS TO BE SENT TO CAEN IN REPAIR OR RECOVERED BY AN FPGA PROGRAMMER (refer to § 5.9.2)!

5.9.1. Restoring by the Backup VME FPGA firmware

In case of upgrading failure on the Standard FLASH page which compromises the communication with the board, as first attempt, the user can try the following recovery procedure based on rebooting the board by loading the Backup firmware copy on the VME FPGA:

1. Power off the VME crate.
2. Set the appropriate jumper (see § 3.2.1) on BKP position extracting the V1495 from the crate, if necessary.
3. Ensure that the V1495 is properly plugged in the VME crate slot.
4. Power on the crate.
5. Check the communication with the board is restored (e.g. read out the VME FPGA firmware release by the CAEN Upgrader’s “Get Firmware Release” option).
6. Once the board is successfully rebooted with the Backup firmware copy, use CAENUpgrader tool to load the proper RBF file on the Standard page of the VME FPGA FLASH (you find it for free download at the V1495 web page).
7. Wait for the message confirming the successful operation
8. Set the jumper back to the STD position and power cycle the crate.

In case of failure of the above procedure, probably means that both the Standard and the Backup page of the FLASH are corrupted. The user can choose to:

- Send back the board in repair to CAEN (see § 6).
- Try to perform an on-the-fly load programming directly of the “Bridge” FPGA. This procedure, detailed in § 5.9.2, is recommended to those users familiar with Altera FPGA programming.

5.9.2. VME FPGA Recovery Procedure

When it is no longer possible to operate the V1495 even by the Backup copy of the “Bridge” FPGA firmware (§ 5.9.1), the user is recommended to send back the board to CAEN in repair. However, a further attempt can be done to restore the communication with the board, which implies the use of an Altera programmer and a recent release of Quartus software.

THE PROCEDURE HERE DESCRIBED IS MOSTLY RECOMMENDED FOR USERS FAMILIAR WITH THE ALTERA PROGRAMMING.

This method allows to load the firmware directly on the “Bridge” FPGA by means of an appropriate .SOF file provided by CAEN upon request. If the attempt succeeds, the user can then perform further upgrade, one by one, of both the “Bridge” FPGA FLASH pages, restoring the whole functionality of the board.

The following procedure is intended for the use of an Altera USB-Blaster programmer, but, in principle, any Altera or Altera compliant programmer can fit this purpose:

1. Contact CAEN to receive the needed .SOF file.
2. Power on the VME crate with the V1495 properly plugged in.
3. Connect the Altera programmer to the “ISP VME J10” connector on the V1495 mainboard.
4. Run the Quartus software and go to *Tools -> Programmer*.
5. Execute: *Autodetect*.
6. Double-click on *<none>* in the *File* menu, then point the .SOF file on your PC.
7. Click the checkbox: *Program/Configure*.
8. Execute: *Start*.
9. Wait for the message confirming the successful operation.
10. Unplug the programmer cable from the board.
11. Without powering off the crate, CAENUpgrader can be used to load the proper .RBF file on the Standard page of the “Bridge” FPGA FLASH (the file is available for free download at the V1495 web page).
12. Power cycle the crate.
13. Check that the communication with the V1495 is restored (e.g. read out the “Bridge” FPGA firmware release by the CAENUpgrader’s “Get Firmware Release” option).
14. If everything succeeds, it is recommended to load the same .RBF file on the Backup FPGA FLASH page in order to have both the firmware images restored.

6. Technical Support Service

CAEN makes available the technical support of its specialists for requests concerning the software and hardware. Use the support form available at the following link:

<https://www.caen.it/support-services/support-form/>

)

CAEN S.p.A.

Via Vetraia 11
55049 - Viareggio
Italy
Phone +39 0584 388 398
Fax +39 0584 388 959
info@caen.it
www.caen.it

CAEN GmbH

Brunnenweg 9
64331 Weiterstadt
Germany
Tel. +49 (0)212 254 4077
Mobile +49 (0)151 16 548 484
info@caen-de.com
www.caen-de.com

CAEN Technologies, Inc.

1 Edgewater Street - Suite 101
Staten Island, NY 10305
USA
Phone: +1 (718) 981-0401
Fax: +1 (718) 556-9185
info@caentechnologies.com
www.caentechnologies.com

CAENspa INDIA Private Limited

B205, BLDG42, B Wing,
Azad Nagar Sangam CHS,
Mhada Layout, Azad Nagar, Andheri (W)
Mumbai, Mumbai City,
Maharashtra, India, 400053
info@caen-india.in
www.caen-india.in

Copyright © CAEN SpA. All rights reserved. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.