




Rev. 4 - 24 September 2025

## A162x 1kV 20-10mA HV 8-16 Ch. Floating Boards



## Purpose of this Manual



This document is the **A162x 1kV 20-10mA HV 8-16 Ch. Floating Boards** User's Manual; it contains information about the installation, the configuration and the use of the units.

## Change Document Record

| Date              | Revision | Changes                                |
|-------------------|----------|----------------------------------------|
| 13 June 2022      | 0        | Preliminary Release                    |
| 13 January 2023   | 1        | Updated Technical specifications table |
| 10 April 2024     | 2        | Updated Output control and monitoring  |
| 22 January 2025   | 3        | Updated Technical specifications table |
| 24 September 2025 | 4        | Updated Technical specifications table |
|                   |          |                                        |
|                   |          |                                        |
|                   |          |                                        |
|                   |          |                                        |
|                   |          |                                        |
|                   |          |                                        |
|                   |          |                                        |

## Manufacturer Contacts



### CAEN S.p.A.

Via Vetraia, 11 55049 Viareggio (LU) - ITALY  
Tel. +39.0584.388.398 Fax +39.0584.388.959  
[www.caen.it](http://www.caen.it) | [info@caen.it](mailto:info@caen.it)

© CAEN SpA – 2021

## Limitation of Responsibility

If the warnings contained in this manual are not followed, CAEN will not be responsible for damage caused by improper use of the device. The manufacturer declines all responsibility for damage resulting from failure to comply with the instructions for use of the product. The equipment must be used as described in the user manual, with particular regard to the intended use, using only accessories as specified by the manufacturer. No modification or repair can be performed.

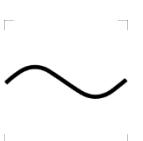
## Disclaimer

No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN spa. The information contained herein has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. CAEN spa reserves the right to modify its products specifications without giving any notice; for up to date information please visit [www.caen.it](http://www.caen.it).

## Made in Italy

We remark that all our boards have been designed and assembled in Italy. In a challenging environment where a competitive edge is often obtained at the cost of lower wages and declining working conditions, we proudly acknowledge that all those who participated in the production and distribution process of our devices were reasonably paid and worked in a safe environment (this is true for the boards marked "MADE IN ITALY", while we cannot guarantee for third-party manufactures).




## Index

|                                               |           |
|-----------------------------------------------|-----------|
| <b>1. Safety Notices .....</b>                | <b>4</b>  |
| <b>2. Overview.....</b>                       | <b>6</b>  |
| Channel Characteristic Table .....            | 7         |
| Front Panel.....                              | 8         |
| Packaging .....                               | 9         |
| Displays .....                                | 9         |
| A1626 External connections.....               | 9         |
| A1625 External connections.....               | 9         |
| Trimmers.....                                 | 9         |
| A1626 Multipin connectors pin assignment..... | 10        |
| A1625 Multipin connectors pin assignment..... | 11        |
| Logic enable for single channel.....          | 12        |
| <b>3. Operating modes.....</b>                | <b>14</b> |
| Installation .....                            | 14        |
| Output control and monitoring .....           | 14        |
| Output Enable.....                            | 15        |
| Grounding specifications .....                | 15        |
| <b>4. Instructions for Cleaning.....</b>      | <b>16</b> |
| Cleaning the Touchscreen .....                | 16        |
| Cleaning the air vents .....                  | 16        |
| General cleaning safety precautions .....     | 16        |
| <b>5. Device decommissioning .....</b>        | <b>17</b> |

# 1. Safety Notices

**N.B. Read carefully the “Precautions for Handling, Storage and Installation” document provided with the product before starting any operation.**

The following HAZARD SYMBOLS may be reported on the unit:

|                                                                                     |                                   |
|-------------------------------------------------------------------------------------|-----------------------------------|
|    | Caution, refer to product manual  |
|    | Caution, risk of electrical shock |
|    | Protective conductor terminal     |
|   | Earth (Ground) Terminal           |
|  | Alternating Current               |
|  | Three-Phase Alternating Current   |

The following symbol may be reported in the present manual:

|                                                                                     |                           |
|-------------------------------------------------------------------------------------|---------------------------|
|  | General warning statement |
|-------------------------------------------------------------------------------------|---------------------------|

The symbol could be followed by the following terms:

- **DANGER:** indicates a hazardous situation which, if not avoided, will result in serious injury or death.
- **WARNING:** indicates a hazardous situation which, if not avoided, could result in death or serious injury.
- **CAUTION:** indicates a situation or condition that, if not avoided, could cause physical injury or damage the product and / or its environment.

CAUTION: To avoid potential hazards



**USE THE PRODUCT ONLY AS SPECIFIED.  
ONLY QUALIFIED PERSONNEL SHOULD PERFORM SERVICE PROCEDURES**

CAUTION: Avoid Electric Overload



**TO AVOID ELECTRIC SHOCK OR FIRE HAZARD, DO NOT POWER A LOAD  
OUTSIDE OF ITS SPECIFIED RANGE**

CAUTION: Avoid Electric Shock



**TO AVOID INJURY OR LOSS OF LIFE, DO NOT CONNECT OR DISCONNECT  
CABLES WHILE THEY ARE CONNECTED TO A VOLTAGE SOURCE**

CAUTION: Do Not Operate without Covers



**TO AVOID ELECTRIC SHOCK OR FIRE HAZARD, DO NOT OPERATE THIS  
PRODUCT WITH COVERS OR PANELS REMOVED**

CAUTION: Do Not Operate in Wet/Damp Conditions



**TO AVOID ELECTRIC SHOCK, DO NOT OPERATE THIS PRODUCT IN WET  
OR DAMP CONDITIONS**

CAUTION: Do Not Operate in an Explosive Atmosphere



**TO AVOID INJURY OR FIRE HAZARD, DO NOT OPERATE THIS PRODUCT  
IN AN EXPLOSIVE ATMOSPHERE**



**THIS DEVICE SHOULD BE INSTALLED AND USED BY SKILLED TECHNICIAN  
ONLY OR UNDER HIS SUPERVISION**



**DO NOT OPERATE WITH SUSPECTED FAILURES.  
IF YOU SUSPECT THIS PRODUCT TO BE DAMAGED, PLEASE CONTACT  
THE TECHNICAL SUPPORT**

## 2. Overview

Two versions are available: A1625 and A1626; the output voltage can be programmed and monitored in the  $0 \div 1000$  V range, with 20 mV resolution. Floating channels allow the detector to be grounded, thus avoiding ground loops that can increase the noise level.

The units offer a double current full scale of 1mA / 10mA (A1626), 2mA / 20mA (A1625), the full scale ranges are independent for each channel and can be selected via the display menu. The cards are compatible with the CAEN Universal Multi-Channel Power System (SYx527).

The channels have independent ground but polarized, i.e. the hot pole can assume values from 0 to 1000V (positive or negative) with respect to earth, the cold pole cannot exceed 50 V with respect to earth.

If the output voltage differs from the programmed value by more than 1% of the full scale of the voltage, the channel is signalled as in an OVER VOLTAGE or UNDER VOLTAGE condition. Furthermore, for each channel, an SVMAX voltage protection limit with a resolution of 1 V can be set via software and the output voltage cannot be programmed beyond this value.

The HV RAMP-UP / DOWN speeds can be selected independently for each channel in the range  $1 \div 100$  V/s

The output current is monitored with a resolution of either 100nA / 10nA (A1625) or 50nA / 5nA (A1626) depending on the current range; if a channel tries to draw a current greater than its programmed limit, it is signalled that it is in an OVERCURRENT condition; the SYx527 system detects this status as a fault and reacts according to the setting of the TRIP parameter, that is:

1) TRAVEL = infinite (= 1000 s)

When the set output current value is reached, the channel behaves like a constant current generator.

2) TRIP = finished (<1000 s)

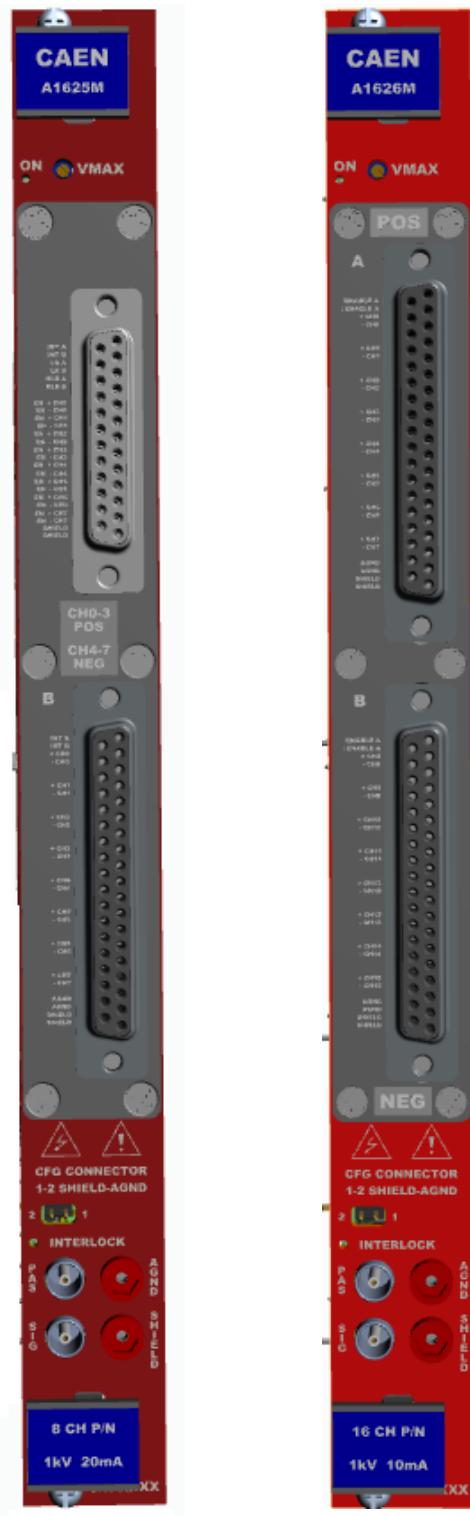
The output current maintains the set value only for the programmed time interval and is then deactivated.

The TRIP time (i.e. the maximum time that an OVERCURRENT condition can last) can be programmed in steps of 0.1 s.

The maximum output voltage (VMAX Hardware) can be set, by means of a potentiometer on the front panel, to the same common value for all the card channels and this value can be read via software.

The output channels can be enabled or disabled according to the interlocking logic.

## Channel Characteristic Table


|                                                     |                                    |         |                                                               |                |         |          |  |  |  |  |
|-----------------------------------------------------|------------------------------------|---------|---------------------------------------------------------------|----------------|---------|----------|--|--|--|--|
| Output Voltage                                      |                                    |         | 0÷1000 V                                                      |                |         |          |  |  |  |  |
| Polarity                                            |                                    |         | Individual Floating Channels; ±50V isolation (internal Clamp) |                |         |          |  |  |  |  |
| Max. Output Current                                 | low range                          | A1626   | 1 mA                                                          |                |         |          |  |  |  |  |
|                                                     |                                    | A1625   | 2 mA                                                          |                |         |          |  |  |  |  |
|                                                     | high range                         | A1626   | 10 mA                                                         |                |         |          |  |  |  |  |
|                                                     |                                    | A1625   | 20 mA                                                         |                |         |          |  |  |  |  |
| Voltage Set Resolution                              |                                    |         | 20 mV                                                         |                |         |          |  |  |  |  |
| Voltage Monitor Resolution                          |                                    |         | 20 mV                                                         |                |         |          |  |  |  |  |
| Current Set Resolution                              |                                    |         | 500 nA                                                        |                |         |          |  |  |  |  |
| Current Monitor Resolution                          | low range                          | A1626   | 5 nA                                                          |                |         |          |  |  |  |  |
|                                                     |                                    | A1625   | 10 nA                                                         |                |         |          |  |  |  |  |
|                                                     | high range                         | A1626   | 50 nA                                                         |                |         |          |  |  |  |  |
|                                                     |                                    | A1625   | 100 nA                                                        |                |         |          |  |  |  |  |
| VMAX hardware                                       |                                    |         | 0÷1000 V common to all channels                               |                |         |          |  |  |  |  |
| VMAX hardware accuracy                              |                                    |         | ± 2% of FSR                                                   |                |         |          |  |  |  |  |
| VMAX software                                       |                                    |         | 0÷1000 V individual                                           |                |         |          |  |  |  |  |
| VMAX software resolution                            |                                    |         | 1V                                                            |                |         |          |  |  |  |  |
| Ramp Down                                           |                                    |         | 1÷100 Volt/sec, 1 Volt/sec step                               |                |         |          |  |  |  |  |
| Ramp Up                                             |                                    |         | 1÷100 Volt/sec, 1 Volt/sec step                               |                |         |          |  |  |  |  |
| Voltage Ripple <sup>1</sup><br>(max load with 20nF) | 1 KHz ÷ 20 MHz                     | typical | Differential:                                                 | <10 mVpp       | Common: | <10 mVpp |  |  |  |  |
|                                                     |                                    | maximum |                                                               | <15 mVpp       |         | <25 mVpp |  |  |  |  |
|                                                     | 10 Hz ÷ 1KHz                       | typical |                                                               | <10 mVpp       |         | <15 mVpp |  |  |  |  |
|                                                     |                                    | maximum |                                                               | <15 mVpp       |         | <30 mVpp |  |  |  |  |
| Accuracy <sup>23</sup>                              | Voltage Monitor vs. Output Voltage |         | typical                                                       | ± 0.1% ± 0.1 V |         |          |  |  |  |  |
|                                                     |                                    |         | maximum                                                       | ± 0.2% ± 0.2 V |         |          |  |  |  |  |
|                                                     | Voltage Set vs. Output Voltage     |         | typical                                                       | ± 0.1% ± 0.1 V |         |          |  |  |  |  |
|                                                     |                                    |         | maximum                                                       | ± 0.2% ± 0.2 V |         |          |  |  |  |  |
|                                                     | Current Mon. vs. Output Current    |         | high range typ.                                               | ± 0.5% ± 50 μA |         |          |  |  |  |  |
|                                                     |                                    |         | high range max                                                | ± 1% ± 100 μA  |         |          |  |  |  |  |
|                                                     |                                    |         | low range typ.                                                | ± 0.5% ± 5 μA  |         |          |  |  |  |  |
|                                                     |                                    |         | low range max                                                 | ± 1% ± 10 μA   |         |          |  |  |  |  |
|                                                     | Current Set vs. Output Current     |         | high range typ.                                               | ± 1% ± 50 nA   |         |          |  |  |  |  |
|                                                     |                                    |         | high range max                                                | ± 1% ± 100 nA  |         |          |  |  |  |  |
| Temperature Coefficient                             | Voltage                            |         | 50ppm/C°                                                      |                |         |          |  |  |  |  |
|                                                     | Current                            |         | 100ppm/C°                                                     |                |         |          |  |  |  |  |
| Power requirement                                   |                                    |         | 280W max                                                      |                |         |          |  |  |  |  |

<sup>1</sup> Higher ripple values could be expected when the HV cards are used in SY4527's, SY4527LC's and SY5527's with PID<10000 and in SY5527LC's with PID<20000

<sup>2</sup> From 10% to 100% of Full Scale Range

<sup>3</sup> Minimum load: 5 μA

## Front Panel



## Packaging

Single width (5 TE); height is 6U.

## Displays

**ON LED** lights up as at least one channel is on

**INTERLOCK LED** *Function:* Red LED. Lights up as the board is in INTERLOCK (channel are disabled).

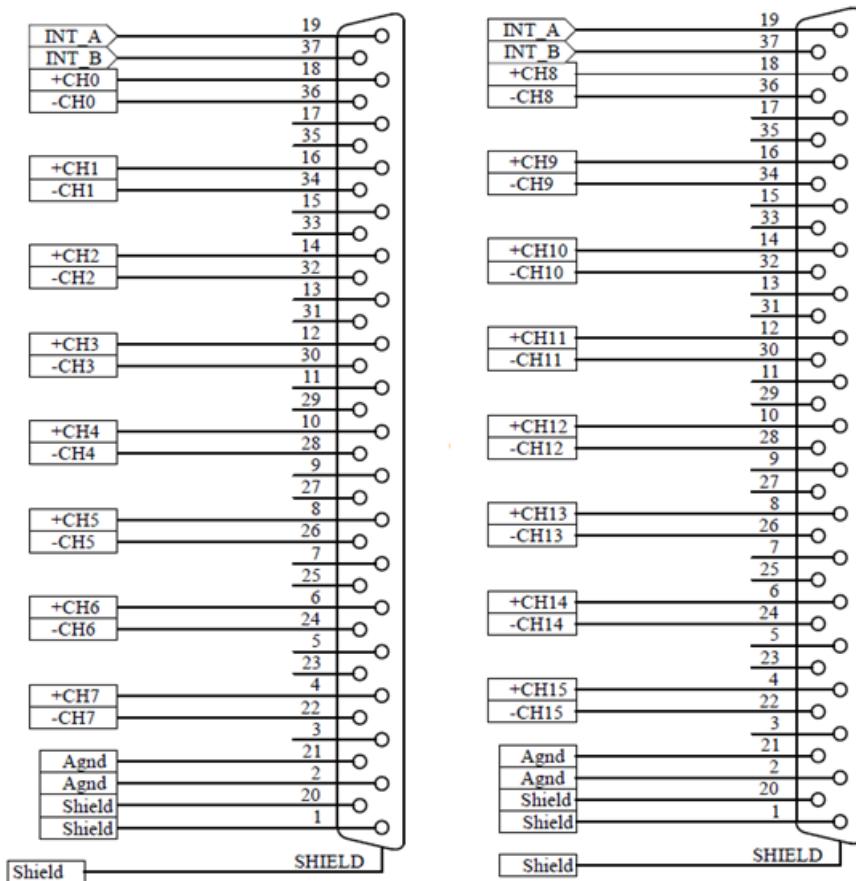
## A1626 External connections

The function and electro-mechanical specifications of the external connectors are listed in the following subsections.

|                           |                                 |                                   |
|---------------------------|---------------------------------|-----------------------------------|
| <b>Output Channels</b>    | 2 x DB37 Amphenol FCI 865637SLT | Ch 0..7 and Ch 8..15              |
| <b>ILK Signal/Passive</b> | No.2 00-type LEMO connector     | See p.15                          |
| <b>Shield</b>             | Radiall R921921 socket, Ø 2mm   | Output connector shield reference |
| <b>AGND</b>               | Radiall R921921 socket, Ø 2mm   | Ground of the crate reference     |
| <b>CFG</b>                | 2pin jumper                     | Connects Shield to AGND           |

## A1625 External connections

The function and electro-mechanical specifications of the external connectors are listed in the following subsections.


|                           |                                 |                                   |
|---------------------------|---------------------------------|-----------------------------------|
| <b>Enable Channels</b>    | 1x DB25 Amphenol FCI            | Ch 0..7                           |
| <b>Output Channels</b>    | 1 x DB37 Amphenol FCI 865637SLT | Ch 0..7                           |
| <b>ILK Signal/Passive</b> | No.2 00-type LEMO connector     | See p.15                          |
| <b>Shield</b>             | Radiall R921921 socket, Ø 2mm   | Output connector shield reference |
| <b>AGND</b>               | Radiall R921921 socket, Ø 2mm   | Ground of the crate reference     |
| <b>CFG</b>                | 2pin jumper                     | Connects Shield to AGND           |

## Trimmers

**VMAX:** it allows to adjust the hardware maximum voltage VMAX common to all the channels. Its value can be read out via software.


**A1626 Multipin connectors pin assignment**

Connector used Amphenol FCI 865637SLT ; Wiring with high insulation cable above 1000V as working voltage.



## A1625 Multipin connectors pin assignment

Connector used Amphenol FCI 865637SLT ; Wiring with high insulation cable above 1000V as working voltage.



## Logic enable for single channel

For each channel it is possible to use a double logic to enable it.

The behaviour of the channels is associated with either a Drive or Undrive software setting to either a local or remote polarization (Power internal module or Ext.source). In the following tables, depending on the settings (jumpers inside the male cable connector), the status of the channel is evident.

N.B. Ext.source = +5V

| <b>Mode Drive<br/>Power internal module</b> | Pin J1 | Pin J1 | Jump     | Status                |
|---------------------------------------------|--------|--------|----------|-----------------------|
| IntA-IntB                                   | 13     | 25     | Not used | Not used              |
| LB_A – LB_B                                 | 12     | 24     | Close    | Active internal power |
| RLB_A – RLB_B                               | 11     | 23     | Close    | Active internal power |
| Channel 0                                   | 9      | 22     | Close    | Channel Disable       |
|                                             | 9      | 22     | Open     | Channel Enable        |
| Channel 1                                   | 8      | 21     | Close    | Channel Disable       |
|                                             | 8      | 21     | Open     | Channel Enable        |
| Channel 2                                   | 7      | 20     | Close    | Channel Disable       |
|                                             | 7      | 20     | Open     | Channel Enable        |
| Channel 3                                   | 6      | 19     | Close    | Channel Disable       |
|                                             | 6      | 19     | Open     | Channel Enable        |
| Channel 4                                   | 5      | 18     | Close    | Channel Disable       |
|                                             | 5      | 18     | Open     | Channel Enable        |
| Channel 5                                   | 4      | 17     | Close    | Channel Disable       |
|                                             | 4      | 17     | Open     | Channel Enable        |
| Channel 6                                   | 3      | 16     | Close    | Channel Disable       |
|                                             | 3      | 16     | Open     | Channel Enable        |
| Channel 7                                   | 2      | 15     | Close    | Channel Disable       |
|                                             | 2      | 15     | Open     | Channel Enable        |

| <b>Mode Drive<br/>NO Power internal module</b> | Pin J1 | Pin J1 | Jump           | Status                   |
|------------------------------------------------|--------|--------|----------------|--------------------------|
| IntA-IntB                                      | 13     | 25     | Not used       | Not used                 |
| LB_A – LB_B                                    | 12     | 24     | Open           | No Active internal power |
| RLB_A – RLB_B                                  | 11     | 23     | Open           | No Active internal power |
| Channel 0                                      | -9     | +22    | No Ext.source  | Channel Disable          |
|                                                | -9     | +22    | Yes Ext.source | Channel Enable           |
| Channel 1                                      | -8     | +21    | No Ext.source  | Channel Disable          |
|                                                | -8     | +21    | Yes Ext.source | Channel Enable           |
| Channel 2                                      | -7     | +20    | No Ext.source  | Channel Disable          |
|                                                | -7     | +20    | Yes Ext.source | Channel Enable           |
| Channel 3                                      | -6     | +19    | No Ext.source  | Channel Disable          |
|                                                | -6     | +19    | Yes Ext.source | Channel Enable           |
| Channel 4                                      | -5     | +18    | No Ext.source  | Channel Disable          |
|                                                | -5     | +18    | Yes Ext.source | Channel Enable           |
| Channel 5                                      | -4     | +17    | No Ext.source  | Channel Disable          |
|                                                | -4     | +17    | Yes Ext.source | Channel Enable           |
| Channel 6                                      | -3     | +16    | No Ext.source  | Channel Disable          |
|                                                | -3     | +16    | Yes Ext.source | Channel Enable           |
| Channel 7                                      | -2     | +15    | No Ext.source  | Channel Disable          |
|                                                | -2     | +15    | Yes Ext.source | Channel Enable           |

N.B: please pay attention to respect the indicated polarity when the external source is used

| <b>Mode UnDrive<br/>Power internal module</b> | Pin J1 | Pin J1 | Jump     | Status                |
|-----------------------------------------------|--------|--------|----------|-----------------------|
| IntA-IntB                                     | 13     | 25     | Not used | Not used              |
| LB_A – LB_B                                   | 12     | 24     | Close    | Active internal power |
| RLB_A – RLB_B                                 | 11     | 23     | Close    | Active internal power |
| Channel 0                                     | 9      | 22     | Open     | Channel Disable       |
|                                               | 9      | 22     | Close    | Channel Enable        |
| Channel 1                                     | 8      | 21     | Open     | Channel Disable       |
|                                               | 8      | 21     | Close    | Channel Enable        |
| Channel 2                                     | 7      | 20     | Open     | Channel Disable       |
|                                               | 7      | 20     | Close    | Channel Enable        |
| Channel 3                                     | 6      | 19     | Open     | Channel Disable       |
|                                               | 6      | 19     | Close    | Channel Enable        |
| Channel 4                                     | 5      | 18     | Open     | Channel Disable       |
|                                               | 5      | 18     | Close    | Channel Enable        |
| Channel 5                                     | 4      | 17     | Open     | Channel Disable       |
|                                               | 4      | 17     | Close    | Channel Enable        |
| Channel 6                                     | 3      | 16     | Open     | Channel Disable       |
|                                               | 3      | 16     | Close    | Channel Enable        |
| Channel 7                                     | 2      | 15     | Open     | Channel Disable       |
|                                               | 2      | 15     | Close    | Channel Enable        |

| <b>Mode UnDrive<br/>NO Power internal module</b> | Pin J1 | Pin J1 | Jump           | Status                   |
|--------------------------------------------------|--------|--------|----------------|--------------------------|
| IntA-IntB                                        | 13     | 25     | Not used       | Not used                 |
| LB_A – LB_B                                      | 12     | 24     | Open           | No Active internal power |
| RLB_A – RLB_B                                    | 11     | 23     | Open           | No Active internal power |
| Channel 0                                        | -9     | +22    | Yes Ext.source | Channel Disable          |
|                                                  | -9     | +22    | No Ext.source  | Channel Enable           |
| Channel 1                                        | -8     | +21    | Yes Ext.source | Channel Disable          |
|                                                  | -8     | +21    | No Ext.source  | Channel Enable           |
| Channel 2                                        | -7     | +20    | Yes Ext.source | Channel Disable          |
|                                                  | -7     | +20    | No Ext.source  | Channel Enable           |
| Channel 3                                        | -6     | +19    | Yes Ext.source | Channel Disable          |
|                                                  | -6     | +19    | No Ext.source  | Channel Enable           |
| Channel 4                                        | -5     | +18    | Yes Ext.source | Channel Disable          |
|                                                  | -5     | +18    | No Ext.source  | Channel Enable           |
| Channel 5                                        | -4     | +17    | Yes Ext.source | Channel Disable          |
|                                                  | -4     | +17    | No Ext.source  | Channel Enable           |
| Channel 6                                        | -3     | +16    | Yes Ext.source | Channel Disable          |
|                                                  | -3     | +16    | No Ext.source  | Channel Enable           |
| Channel 7                                        | -2     | +15    | Yes Ext.source | Channel Disable          |
|                                                  | -2     | +15    | No Ext.source  | Channel Enable           |

N.B: please pay attention to respect the indicated polarity when the external source is used

## 3. Operating modes

The Mod. A162x boards can be controlled, either locally or remotely, through the SYx527 SYSTEM software interface. For details on SYx527 SYSTEM operation, please refer to the User's Manual of this product. The following sections contain a description of commands available for the board control and status monitoring.

### Installation

The Mod. A162x are SYx527 boards. At power ON, the SYx527 processor will scan all the slots in the crate to find out where the module is plugged and what kind of module it is.

**N.B.: the ventilation fan speed must be set to HIGH or MEDIUM.**

### Output control and monitoring

For each output channel, it is possible, through the system, to access the following parameters:

|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>CHANNEL NAME (settable)</i> | descriptive name for the relevant channel                                                                                                                                                                                                                                                                                                                                                                                                          |
| <i>VOSET (settable)</i>        | the first of the two allowed voltage programmable values.                                                                                                                                                                                                                                                                                                                                                                                          |
| <i>IOSET (settable)</i>        | the first of the two allowed current limit programmable values                                                                                                                                                                                                                                                                                                                                                                                     |
| <i>V1SET (settable)</i>        | the second of the two allowed voltage programmable values                                                                                                                                                                                                                                                                                                                                                                                          |
| <i>I1SET (settable)</i>        | the second of the two allowed current limit programmable values                                                                                                                                                                                                                                                                                                                                                                                    |
| <i>RUp (settable)</i>          | the Ramp-Up parameter value, i.e. the maximum voltage programmable increase rate.                                                                                                                                                                                                                                                                                                                                                                  |
| <i>RDWn (settable)</i>         | the Ramp-Down parameter value, i.e. the maximum voltage programmable decrease rate.                                                                                                                                                                                                                                                                                                                                                                |
| <i>TRIP (settable)</i>         | the TRIP parameter value, i.e. the maximum time an Over Current condition is allowed to last.                                                                                                                                                                                                                                                                                                                                                      |
| <i>SVMAX (settable)</i>        | the maximum voltage value programmable for the channel. If the value set as SVMAX is less than the current value of the VOSET/ V1SET parameter, the latter will automatically decrease to the SVMAX value.                                                                                                                                                                                                                                         |
| <i>VMON (monitor)</i>          | monitored voltage value                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>IMON (monitor)</i>          | monitored current value                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>ImRange (settable):</i>     | Sets current range (high or low)                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <i>STATUS (monitor)</i>        | it displays the channel status.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <i>PW (ON/OFF)</i>             | the Power parameter shows the ON/OFF channel status. As this parameter is set ON, the channel is switched on (if the INTERLOCK is not active and if the channel is enabled either locally or remotely) highlighted in green when channel ON; onstate = ON; offstate = OFF                                                                                                                                                                          |
| <i>ZCDetect (settable)</i>     | On: enable the detection of leakage currents<br>Off: disable the detection of leakage currents                                                                                                                                                                                                                                                                                                                                                     |
| <i>ZCAdjust (settable)</i>     | En: the current offset due to leakage currents on cascaded channels is compensated<br>Dis: the current offset due to leakage currents on cascaded channels is not compensated                                                                                                                                                                                                                                                                      |
| <i>POn (EN/DIS):</i>           | Power-On option, which can be enabled or disabled. If this option is enabled, at Power-On or after a Restart each channel is restored in the same condition (defined by the Power parameter) it was before the Power-Off or Reset. If this option is disabled, at Power-On or after a Restart all the channels are off, independently from the condition in which they were before the Power-Off or Reset ; onstate = Enabled; offstate = Disabled |
| <i>PDwn (Kill/Ramp):</i>       | Power-Down option, which can be set as KILL or RAMP. It affects the way the channels react at a Power-Off command caused by a TRIP condition. If the KILL option is selected, the relevant channel will be switched off at the maximum rate available. If the RAMP option is selected, the voltage will drop to zero at a rate determined by the value of the Ramp-Down parameter programmed for that channel; onstate = Ramp; offstate = Kill     |
| <i>TripInt:</i>                | 2N-bit word (hexadecimal) maximum 16 lines, where N is the number of the board's Internal Trip Bus lines. Bits [0;N-1] allow the channel to sense the trip status from the corresponding lines when set to one; in the same way, bits [N;2N-1] allow the channel to propagate the trip status over the Trip Bus: bit N on line 0 and so on (see SY4527 User's manual).                                                                             |
| <i>TripExt:</i>                | Must be set in the 0÷255 range (hexadecimal). Bits [0;3] allow the channel to sense the trip status from the corresponding lines when set to one; in the same way, bits [4;7] allow the channel to propagate the trip status over the trip bus: bit 4 on line 0 and so on (see SY4527 User's manual).                                                                                                                                              |
| <i>EnCtr (Drive / Undrive)</i> | On A1625, allows to select the channel enable mode; see p. 12                                                                                                                                                                                                                                                                                                                                                                                      |

The following messages may be returned by the SYx527 SYSTEM when monitoring the channel status:

|         |                                                  |
|---------|--------------------------------------------------|
| OFF     | (channel turned OFF)                             |
| RUP     | (channel ramping up)                             |
| RDWN    | (channel ramping down)                           |
| OVC     | (channel in OVERCURRENT condition)               |
| OVV     | (channel in OVERVOLTAGE condition)               |
| UNV     | (channel in UNDERVOLTAGE condition)              |
| EXT_DIS | (channel disabled by board INTERLOCK protection) |

Moreover, it is possible to monitor board temperature and to check board status; the following messages may be returned by the SYSTEM when monitoring the board status:

|            |                             |
|------------|-----------------------------|
| UNDER_TEMP | (board temperature < 5°C )  |
| OVER_TEMP  | (board temperature > 65°C ) |

## Output Enable

To enable the HV output channels, first, it is necessary that INT\_A, INT\_B pins on the output connectors are short circuited; Then the enable procedure is completed in one of the following ways:



- terminating the PASSIVE INTERLOCK [P] connector on 50 Ohm.
- supplying the SIGNAL INTERLOCK [S] connector with a +5 V (3-4mA) signal.

The INTERLOCK LED (red) is turned off as one of the actions above is performed.

When the channels are disabled the voltage outputs drop to zero at the maximum rate available; when the output disable cause is removed (see above), the channels remain OFF until the User turns them ON via software.

## Grounding specifications

The output channels feature independent floating return. This feature allows on-detector grounding, thus avoiding loops which may increase noise level. The connection of shield and return to Earth is fundamental for User safety; the connection must always be at the level of detector or power supply system.

The best configuration must be determined by the user upon application, the optimal connection depends on many characteristics of the related experiment. Please note that SHIELD is a shielding reference for the HV channels; it can be used as reference for external filters and it is available on the output connector. If it is not used, it must be wired to AGND via front panel jumper.

## 4. Instructions for Cleaning

The equipment may be cleaned with isopropyl alcohol or deionized water and air dried. Clean the exterior of the product only.

Do not apply cleaner directly to the items or allow liquids to enter or spill on the product.

### Cleaning the Touchscreen

To clean the touchscreen (if present), wipe the screen with a towelette designed for cleaning monitors or with a clean cloth moistened with water.

Do not use sprays or aerosols directly on the screen; the liquid may seep into the housing and damage a component. Never use solvents or flammable liquids on the screen.

### Cleaning the air vents

It is recommended to occasionally clean the air vents (if present) on all vented sides of the board. Lint, dust, and other foreign matter can block the vents and limit the airflow. Be sure to unplug the board before cleaning the air vents and follow the general cleaning safety precautions.

### General cleaning safety precautions

CAEN recommends cleaning the device using the following precautions:

- Never use solvents or flammable solutions to clean the board.
- Never immerse any parts in water or cleaning solutions; apply any liquids to a clean cloth and then use the cloth on the component.
- Always unplug the board when cleaning with liquids or damp cloths.
- Always unplug the board before cleaning the air vents.
- Wear safety glasses equipped with side shields when cleaning the board

## 5. Device decommissioning

After its intended service, it is recommended to perform the following actions:

- Detach all the signal/input/output cable
- Wrap the device in its protective packaging
- Insert the device in its packaging (if present)



**THE DEVICE SHALL BE STORED ONLY AT THE ENVIRONMENT CONDITIONS SPECIFIED IN THE MANUAL, OTHERWISE PERFORMANCES AND SAFETY WILL NOT BE GUARANTEED**



**CAEN S.p.A.**  
Via Vetraia 11  
55049 - Viareggio  
Italy  
Phone +39 0584 388 398  
Fax +39 0584 388 959  
[info@caen.it](mailto:info@caen.it)  
[www.caen.it](http://www.caen.it)



**CAEN GmbH**  
Eckehardweg 10  
42653 - Solingen  
Germany  
Phone +49 212 254 40 77  
Fax +49 212 254 40 79  
[info@caen-de.com](mailto:info@caen-de.com)  
[www.caen-de.com](http://www.caen-de.com)

**CAEN Technologies, Inc.**  
1 Edgewater Street - Suite 101  
Staten Island, NY 10305  
USA  
Phone: +1 (718) 981-0401  
Fax: +1 (718) 556-9185  
[info@caentechnologies.com](mailto:info@caentechnologies.com)  
[www.caentechnologies.com](http://www.caentechnologies.com)

**CAENspa INDIA Private Limited**  
B205, BLDG42, B Wing,  
Azad Nagar Sangam CHS,  
Mhada Layout, Azad Nagar, Andheri (W)  
Mumbai, Mumbai City,  
Maharashtra, India, 400053  
[info@caen-india.in](mailto:info@caen-india.in)  
[www.caen-india.in](http://www.caen-india.in)

