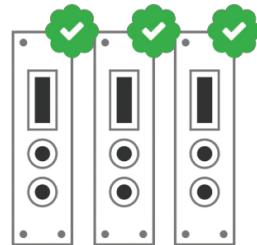


Rev. 2 - December 16th, 2024

740 Family

Waveform Recording Firmware Registers

Register your device


Register your device to your **MyCAEN+** account and get access to our customer services, such as notification for new firmware or software upgrade, tracking service procedures or open a ticket for assistance. **MyCAEN+** accounts have a dedicated support service for their registered products. A set of basic information can be shared with the operator, speeding up the troubleshooting process and improving the efficiency of the support interactions.

MyCAEN+ dashboard is designed to offer you a direct access to all our after sales services. Registration is totally free, to create an account go to <https://www.caen.it/become-mycaenplus-user> and fill the registration form with your data.


1

create a MyCAEN+ account

2

register your devices

3

get support and more!

<https://www.caen.it/become-mycaenplus-user/>

Purpose of this Manual

The User Manual contains the full description of the Waveform Recording firmware registers for 740 digitizer family. The description is compliant with the firmware revision **4.29_0.13**.

For future release compatibility, check in the firmware history files.

Change Document Record

Date	Revision	Changes
Oct 28 th , 2016	00	First release unified for 740 digitizer family
Apr 16 th , 2018	01	Updated registers 0x8100, 0x8104, 0x8138, 0x8144, 0x8170, 0x8178, 0x810C, 0x811C, 0xEF04. Added register 0x81C4.
Dec 16 th , 2024	02	Reviewed Cover and End pages. Updated registers 1.14, 1.16, 1.20, 1.34, 1.35 . Enumerated document sections. Added Reference Documents, Chap. 2 .

Symbols, Abbreviated Terms, and Notations

ADC	Analog-to-Digital Converter
AMC	ADC & Memory Controller
DAC	Digital-to-Analog Converter
DC	Direct Current
DPP	Digital Pulse Processing
LVDS	Low-Voltage Differential Signal
PLL	Phase-Locked Loop
ROC	ReadOut Controller
TTT	Trigger Time Tag
USB	Universal Serial Bus

Reference Documents

[RD1] UM3050 – V1740/VX1740 User Manual

[RD2] UM3245 – N6740 User Manual

[RD3] UM3364 – DT5740 User Manual

All documents can be downloaded at: <http://www.caen.it/csite/LibrarySearch.jsp>

Manufacturer Contacts

CAEN S.p.A.

Via Vetraia, 11 55049 Viareggio (LU) - ITALY
Tel. +39.0584.388.398 Fax +39.0584.388.959
www.caen.it | info@caen.it
©CAEN SpA – 2024

Limitation of Responsibility

If the warnings contained in this manual are not followed, CAEN will not be responsible for damage caused by improper use of the device. The manufacturer declines all responsibility for damage resulting from failure to comply with the instructions for use of the product. The equipment must be used as described in the user manual, with particular regard to the intended use, using only accessories as specified by the manufacturer. No modification or repair can be performed.

Disclaimer

No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN SpA.

The information contained herein has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. CAEN SpA reserves the right to modify its products specifications without giving any notice; for up to date information please visit www.caen.it.

Made in Italy

We remark that all our boards have been designed and assembled in Italy. In a challenging environment where a competitive edge is often obtained at the cost of lower wages and declining working conditions, we proudly acknowledge that all those who participated in the production and distribution process of our devices were reasonably paid and worked in a safe environment (while this is true for the boards marked "MADE IN ITALY", we cannot guarantee for third-party manufactures).

Index

Purpose of this Manual	3
Change document record	3
Symbols, abbreviated terms and notation	3
Reference Documents	3
Manufacturer Contacts	4
Limitation of Responsibility	4
Disclaimer	4
Made in Italy	4
1 Registers and Data Format	7
1.1 Reset and Clear	7
1.2 Register Address Map	8
1.3 Event Readout Buffer	11
1.4 Dummy32	12
1.5 Group n Trigger Threshold	13
1.6 Group n Status	14
1.7 AMC Firmware Revision	15
1.8 DC Offset	16
1.9 Channel Enable Mask of Group n	17
1.10 Group n Low Channels DC Offset Individual Correction	18
1.11 Group n High Channels DC Offset Individual Correction	19
1.12 Board Configuration	20
1.13 Buffer Organization	21
1.14 Custom Size	22
1.15 Decimation Factor	23
1.16 Acquisition Control	24
1.17 Acquisition Status	26
1.18 Software Trigger	27
1.19 Global Trigger Mask	28
1.20 Front Panel TRG-OUT (GPO) Enable Mask	29
1.21 Post Trigger	30
1.22 LVDS I/O Data	31
1.23 Front Panel I/O Control	32
1.24 Group Enable Mask	35
1.25 ROC FPGA Firmware Revision	36
1.26 Event Stored	37
1.27 Voltage Level Mode Configuration	38
1.28 Software Clock Sync	39
1.29 Board Info	40
1.30 Analog Monitor Mode	41
1.31 Event Size	42
1.32 Fan Speed Control	43
1.33 Memory Buffer Almost Full Level	44
1.34 Run/Start/Stop Delay	45
1.35 Board Failure Status	46
1.36 Front Panel LVDS I/O New Features	47

1.37 Buffer Occupancy Gain	48
1.38 Extended Veto Delay	49
1.39 Readout Control	50
1.40 Readout Status	52
1.41 Board ID	53
1.42 MCST Base Address and Control	54
1.43 Relocation Address	55
1.44 Interrupt Status/ID	56
1.45 Interrupt Event Number	57
1.46 Max Number of Events per BLT	58
1.47 Scratch	59
1.48 Software Reset	60
1.49 Software Clear	61
1.50 Configuration Reload	62
1.51 Configuration ROM Checksum	63
1.52 Configuration ROM Checksum Length BYTE 2	64
1.53 Configuration ROM Checksum Length BYTE 1	65
1.54 Configuration ROM Checksum Length BYTE 0	66
1.55 Configuration ROM Constant BYTE 2	67
1.56 Configuration ROM Constant BYTE 1	68
1.57 Configuration ROM Constant BYTE 0	69
1.58 Configuration ROM C Code	70
1.59 Configuration ROM R Code	71
1.60 Configuration ROM IEEE OUI BYTE 2	72
1.61 Configuration ROM IEEE OUI BYTE 1	73
1.62 Configuration ROM IEEE OUI BYTE 0	74
1.63 Configuration ROM Board Version	75
1.64 Configuration ROM Board Form Factor	76
1.65 Configuration ROM Board ID BYTE 1	77
1.66 Configuration ROM Board ID BYTE 0	78
1.67 Configuration ROM PCB Revision BYTE 3	79
1.68 Configuration ROM PCB Revision BYTE 2	80
1.69 Configuration ROM PCB Revision BYTE 1	81
1.70 Configuration ROM PCB Revision BYTE 0	82
1.71 Configuration ROM FLASH Type	83
1.72 Configuration ROM Board Serial Number BYTE 1	84
1.73 Configuration ROM Board Serial Number BYTE 0	85
1.74 Configuration ROM VCXO Type	86
2 Technical Support	87

1 Registers and Data Format

All registers described in the User Manual are 32-bit wide. In case of VME access, **A24** and **A32** addressing mode can be used.

1.1 Reset and Clear

The module's registers can be set back to their default values on software reset command by writing in the Software Reset register or by system reset from backplane, in case of VME boards. In particular, the registers or buffers listed below

- Event Readout Buffer
- Buffer Occupancy
- Event Stored
- Event Size

are also be set back to their default values (registers) or emptied (buffers) by a clear issued:

- automatically by the firmware at the start of each run;
- on software command by writing in the Software Clear register
- by hardware (VME boards only), through the LVDS interface properly configured (see the section "Front Panel LVDS I/Os" of the digitizer User Manual **[RD1]**).

1.2 Register Address Map

The table below reports the complete list of registers that can be accessed by the user. The register names in the first column can be clicked to be redirected to the relevant register description. The register address is reported on the second column as a hex value. The third column indicates the allowed register access mode, where:

- R **Read only.** The register can be accessed in read only mode.
- W **Write only.** The register can be accessed in write only mode.
- R/W **Read and write.** The register can be accessed both in read and write mode.

According to the attribute reported in the fourth column, the following choices are available:

- G **Group register.** In case of 740 and 742 digitizer families, some registers manage **groups** of channels. Group registers have M instances, where M is the total number of groups. Write access can be performed in single group mode (one group at a time) or broadcast (simultaneous write access to all groups). Read command must be in single group mode. Single group access can be performed at address 0x1nXY, where n identifies the nth group, while broadcast write can be performed at the address 0x80XY. For example:
 - access to address 0x1320 to read/write register 0x1n20 for group 3 of the board. In case of 740 and 742 board, group 3 corresponds to channels from 24 to 31 (8 channels per group). The same value is applied to all channels in the same group.
 - to write the same value for all groups in the board, access to 0x8020 (broadcast write). To read the corresponding value, access to the individual address 0x1n20.
- C **Common register.** Register with this attribute has a single instance, therefore read and write access can be performed at address 0x80XY only.

Register Name	Address	Mode	Attribute
Event Readout Buffer	0x0000 - 0x0FFC	R	C
Dummy32	0x1n24, 0x8024	R/W	G
Group n Trigger Threshold	0x1n80, 0x8080	R/W	G
Group n Status	0x1n88	R	G
AMC Firmware Revision	0x1n8C	R	G
DC Offset	0x1n98, 0x8098	R/W	G
Channel Enable Mask of Group n	0x1nA8, 0x80A8	R/W	G
Group n Low Channels DC Offset Individual Correction	0x1nC0, 0x80C0	R/W	G
Group n High Channels DC Offset Individual Correction	0x1nC4, 0x80C4	R/W	G
Board Configuration	0x8000, 0x8004 (BitSet), 0x8008 (BitClear)	R/W	C
Buffer Organization	0x800C	R/W	C
Custom Size	0x8020	R/W	C
Decimation Factor	0x8044	R/W	C
Acquisition Control	0x8100	R/W	C
Acquisition Status	0x8104	R	C
Software Trigger	0x8108	W	C
Global Trigger Mask	0x810C	R/W	C
Front Panel TRG-OUT (GPO) Enable Mask	0x8110	R/W	C
Post Trigger	0x8114	R/W	C
LVDS I/O Data	0x8118	R/W	C
Front Panel I/O Control	0x811C	R/W	C
Group Enable Mask	0x8120	R/W	C
ROC FPGA Firmware Revision	0x8124	R	C
Event Stored	0x812C	R	C
Voltage Level Mode Configuration	0x8138	R/W	C
Software Clock Sync	0x813C	W	C
Board Info	0x8140	R	C
Analog Monitor Mode	0x8144	R/W	C
Event Size	0x814C	R	C
Fan Speed Control	0x8168	R/W	C
Memory Buffer Almost Full Level	0x816C	R/W	C
Run/Start/Stop Delay	0x8170	R/W	C
Board Failure Status	0x8178	R	C
Front Panel LVDS I/O New Features	0x81A0	R/W	C
Buffer Occupancy Gain	0x81B4	R/W	C
Extended Veto Delay	0x81C4	R/W	C
Readout Control	0xEF00	R/W	C
Readout Status	0xEF04	R	C
Board ID	0xEF08	R/W	C
MCST Base Address and Control	0xEF0C	R/W	C
Relocation Address	0xEF10	R/W	C
Interrupt Status/ID	0xEF14	R/W	C
Interrupt Event Number	0xEF18	R/W	C
Max Number of Events per BLT	0xEF1C	R/W	C
Scratch	0xEF20	R/W	C
Software Reset	0xEF24	W	C
Software Clear	0xEF28	W	C
Configuration Reload	0xEF34	W	C
Configuration ROM Checksum	0xF000	R	C
Configuration ROM Checksum Length BYTE 2	0xF004	R	C
Configuration ROM Checksum Length BYTE 1	0xF008	R	C
Configuration ROM Checksum Length BYTE 0	0xF00C	R	C
Configuration ROM Constant BYTE 2	0xF010	R	C

Configuration ROM Constant BYTE 1	0xF014	R	C
Configuration ROM Constant BYTE 0	0xF018	R	C
Configuration ROM C Code	0xF01C	R	C
Configuration ROM R Code	0xF020	R	C
Configuration ROM IEEE OUI BYTE 2	0xF024	R	C
Configuration ROM IEEE OUI BYTE 1	0xF028	R	C
Configuration ROM IEEE OUI BYTE 0	0xF02C	R	C
Configuration ROM Board Version	0xF030	R	C
Configuration ROM Board Form Factor	0xF034	R	C
Configuration ROM Board ID BYTE 1	0xF038	R	C
Configuration ROM Board ID BYTE 0	0xF03C	R	C
Configuration ROM PCB Revision BYTE 3	0xF040	R	C
Configuration ROM PCB Revision BYTE 2	0xF044	R	C
Configuration ROM PCB Revision BYTE 1	0xF048	R	C
Configuration ROM PCB Revision BYTE 0	0xF04C	R	C
Configuration ROM FLASH Type	0xF050	R	C
Configuration ROM Board Serial Number BYTE 1	0xF080	R	C
Configuration ROM Board Serial Number BYTE 0	0xF084	R	C
Configuration ROM VCXO Type	0xF088	R	C

1.3 Event Readout Buffer

This is the addressing space for the event readout. The event payload is made of 32-bit words; its structure is defined in the User Manual of the board **[RD1][RD2][RD3]**.

Address 0x0000 - 0x0FFC
Mode R
Attribute C

Bit	Description
[31:0]	32-bit word of the event.

1.4 Dummy32

Writing and reading at this register can be used for debug purposes.

Address 0x1n24, 0x8024
Mode R/W
Attribute G

Bit	Description
[31:0]	Dummy32 value (default value is 0).

1.5 Group n Trigger Threshold

Each 8-channel group (Group 0 = Ch0..7, Group 1 = Ch8..15, etc.) is able to generate a trigger request signal when the input pulse exceeds a configurable threshold V_{th} on at least one of the enabled channels. This register allows to set V_{th} common to all the channels of the group.

Address 0x1n80, 0x8080
 Mode R/W
 Attribute G

Bit	Description
[11:0]	V_{th} = Trigger Threshold Value expressed in LSB (default value is 0). 1 LSB = Input Dynamic Range/ 2^{12} bit
[31:12]	Reserved.

1.6 Group n Status

This register contains the status information common to all the channels of group n.

Address 0x1n88
Mode R
Attribute G

Bit	Description
[0]	Memory Full.
[1]	Memory Empty.
[2]	Group n DAC Busy. Options are: 0 = DC offset updated; 1 = Busy.
[31:3]	Reserved.

1.7 AMC Firmware Revision

This register contains the channel FPGA (AMC) firmware revision information.
The complete format is:

Firmware Revision = X.Y (16 lower bits)

Firmware Revision Date = Y/M/DD (16 higher bits)

EXAMPLE 1: revision 1.03, November 12th, 2007 is 0x7B120103.

EXAMPLE 2: revision 2.09, March 7th, 2016 is 0x03070209.

NOTE: the nibble code for the year makes this information to roll over each 16 years.

Address	0x1n8C
Mode	R
Attribute	G

Bit	Description
[7:0]	AMC Firmware Minor Revision Number (Y).
[15:8]	AMC Firmware Major Revision Number (X).
[31:16]	AMC Firmware Revision Date (Y/M/DD).

1.8 DC Offset

This register allows to adjust the baseline position (i.e. the 0 Volt) of the input signal on the ADC scale. The ADC scale ranges from 0 to $2^{\text{NBit}} - 1$, where NBit is the number of bits of the on-board ADC. The DAC controlling the DC Offset has 16 bits, i.e. it goes from 0 to 65535 independently from the NBit value and the board type.

Typically a DC Offset value of 32K (DAC mid-scale) corresponds to about the ADC mid-scale. Increasing values of DC Offset make the baseline decrease. The range of the DAC is about 5% (typ.) larger than the ADC range, hence DAC settings close to 0 and 64K correspond to ADC respectively over and under range.

WARNING: before writing this register, it is necessary to check that bit[2] = 0 at 0x1n88 (see Sec. 1.6), otherwise the writing process will not run properly!

Address	0x1n98, 0x8098
Mode	R/W
Attribute	G

Bit	Description
[15:0]	DC Offset value in DAC LSB unit.
[31:16]	Reserved

1.9 Channel Enable Mask of Group n

Enable/disable selected channels of group n.

NOTE: this register must not be accessed while the acquisition is running.

Address 0x1nA8, 0x80A8
Mode R/W
Attribute G

Bit	Description
[7:0]	Bit m enables/disables channel m of group n. Options are: 0: disabled; 1: enabled.
[31:8]	Reserved.

1.10 Group n Low Channels DC Offset Individual Correction

The DC Offset set through the 0x1n98 register (see Sec. 1.8) applies commonly to all the channels of the group, but the channel baselines usually result misaligned due to intrinsic offset. In order to align the baselines and so guarantee a trigger threshold setting (0x1n80, see Sec. 1.5) effective on all the channels, this register allows to apply a 8-bit positive offset correction to the ADC output value individually for the four low channels of group n.

EXAMPLE: applying a 255 offset value (FF) to channel 2 of group 3 implies writing 0x00FF0000 at register address 0x13C0.

Address	0x1nC0, 0x80C0
Mode	R/W
Attribute	G

Bit	Description
[31:0]	<p>Individual DC Offset Mask. Options are: 0x000000FF = applies a FF (255) DC offset to the first channel of group n; 0x0000FF00 = applies a FF (255) DC offset to the second channel of group n; 0x00FF0000 = applies a FF (255) DC offset to the third channel of group n; 0xFF000000 = applies a FF (255) DC offset to the fourth channel of group n.</p> <p>NOTE: this register is supported from AMC FPGA default firmware revision 0.10 on.</p>

1.11 Group n High Channels DC Offset Individual Correction

According to what described for 0x1nC0 (see Sec. 1.10), this register allows to apply a 8-bit positive offset correction to the ADC output value individually for the four high channels of group n.

EXAMPLE: applying a 255 offset correction (FF) to channel 6 of group 5 implies writing 0x0000FF00 at register address 0x16C4.

Address	0x1nC4, 0x80C4
Mode	R/W
Attribute	G

Bit	Description
[31:0]	<p>Individual DC Offset Mask. Options are:</p> <p>0x000000FF = applies a FF (255) offset correction to the fifth channel of group n; 0x0000FF00 = applies a FF (255) offset correction to the sixth channel of group n; 0x00FF0000 = applies a FF (255) offset correction to the seventh channel of group n; 0xFF000000 = applies a FF (255) offset correction to the eighth channel of group n.</p> <p>NOTE: this register is supported from AMC FPGA default firmware revision 0.10 on.</p>

1.12 Board Configuration

This register contains general settings for the board configuration.

Address 0x8000, 0x8004 (BitSet), 0x8008 (BitClear)
 Mode R/W
 Attribute C

Bit	Description
[0]	Reserved: must be 0.
[1]	Trigger Overlap Setting (default value is 0). When two acquisition windows are overlapped, the second trigger can be either accepted or rejected. Options are: 0 = Trigger Overlapping Not Allowed (no trigger is accepted until the current acquisition window is finished); 1 = Trigger Overlapping Allowed (the current acquisition window is prematurely closed by the arrival of a new trigger).
[2]	Reserved: must be 0.
[3]	Test Pattern Enable (default value is 0). This bit enables a triangular (0<->3FFF) test wave to be provided at the ADCs input for debug purposes. Options are: 0 = disabled; 1 = enabled.
[4]	Reserved: must be 1.
[5]	Reserved: must be 0.
[6]	Self-trigger Polarity (default value is 0). Options are: 0 = Positive (the self-trigger is generated upon the input pulse over-threshold); 1 = Negative (the self-trigger is generated upon the input pulse under-threshold).
[8:7]	Reserved: must be 0.
[9]	Reserved.
[10]	Reserved: must be 0.
[22:11]	Reserved.
[23]	Reserved: must be 0.
[31:24]	Reserved.

1.13 Buffer Organization

Sets the number of buffers in which the channel memory can be divided. A write access to this register causes a software clear.

According to the BUFFER_CODE value written in the register, the number of buffers Nb is given by $2^{\text{BUFFER_CODE}}$.

BUFFER_CODE	Nr.Buffers (Nb)	Buffer Size (Samples)
0x0	1	192k (SRAM 192kS/ch), 1.5M (SRAM 1.5MS/ch)
0x1	2	96k (SRAM 192kS/ch), 750k (SRAM 1.5MS/ch)
0x2	4	48k (SRAM 192kS/ch), 384k (SRAM 1.5MS/ch)
0x3	8	24k (SRAM 192kS/ch), 192k (SRAM 1.5MS/ch)
0x4	16	12k (SRAM 192kS/ch), 96k (SRAM 1.5MS/ch)
0x5	32	6k (SRAM 192kS/ch), 48k (SRAM 1.5MS/ch)
0x6	64	3k (SRAM 192kS/ch), 24k (SRAM 1.5MS/ch)
0x7	128	1536 (SRAM 192kS/ch), 12k (SRAM 1.5MS/ch)
0x8	256	768 (SRAM 192kS/ch), 6k (SRAM 1.5MS/ch)
0x9	512	384 (SRAM 192kS/ch), 3k (SRAM 1.5MS/ch)
0xA	1024	192 (SRAM 192kS/ch), 1536 (SRAM 1.5MS/ch)

To obtain a number of samples per buffer (referring to one channel) different from the table above, it is necessary to use the register address 0x8020 (see Sec. 1.14). In this case, the BUFFER_CODE must be set to have the closest buffer size with a number of samples per buffer larger than the one set by 0x8020 (see Sec. 1.14).

EXAMPLE: to have a desired number of samples per buffer of 900 (set through 0x8020), the BUFFER_CODE must be 0x7 in case of 192-kS/ch memory or 0xA if 1.5-MS/ch one.

WARNING: This register must not be written while acquisition is running.

Address	0x800C
Mode	R/W
Attribute	C

Bit	Description
[3:0]	BUFFER_CODE
[31:4]	Reserved.

1.14 Custom Size

Writing the number of memory locations per event (N_LOC) in this register, the user can set the record length, which is the number of samples (Ns) of the digitized waveform in the acquisition window.

WARNING: this register must not be written while acquisition is running.

Address 0x8020
 Mode R/W
 Attribute C

Bit	Description
[31:0]	<p>Number of Memory Locations per Event (N_LOC). Options are: 0 = Custom Size disabled (record length is given by the register address 0x800C, see Sec. 1.13); N_LOC = the number of samples of the record length is this given by the formula:</p> $3 * N_LOC = 2 * Ns \text{ (3 locations = 2 samples)}$ <p>So, only values that are multiples of 2 are allowed for this register.</p> <p>EXAMPLE: to have 900 samples per buffer, the value to write is N_LOC = 0x258.</p>

1.15 Decimation Factor

This register permits to program the decimation factor to be applied to the acquired waveforms, according to the formula:

$$(62.5/2^n) \text{ MS/s}$$

where $n = [0,1,\dots,7]$.

Please, refer to the digitizer User Manual for details on this functionality **[RD1][RD2][RD3]**.

NOTE: developers not using CAEN software must consider that this register affects the post-trigger (0x8114, see Sec. **1.21**) and the acquisition window, that is to say the record length based on the buffer organization and the custom size settings (0x800C and 0x8020, see respectively Sec. **1.13** and **1.14**).

Address 0x8044
 Mode R/W
 Attribute C

Bit	Description
[3:0]	n parameter
[31:4]	Reserved.

1.16 Acquisition Control

This register manages the acquisition settings.

Address 0x8100
 Mode R/W
 Attribute C

Bit	Description
[1:0]	<p>Start/Stop Mode Selection (default value is 00). Options are: 00 = SW CONTROLLED. Start/stop of the run takes place on software command by setting/resetting bit[2] of this register; 01 = S-IN/GPI CONTROLLED (S-IN for VME, GPI for Desktop/NIM). Acquisition must be armed by setting bit[2] = 1, then the run can optionally START/STOP ON LEVEL or START ON EDGE according to bit[11] (NOTE: the START ON EDGE option is implemented from ROC FPGA fw revision 4.22 on); 10 = FIRST TRIGGER CONTROLLED. If the acquisition is armed (i.e. bit[2] = 1), then the run starts on the first trigger pulse (rising edge on TRG-IN); this pulse is not used as input trigger, while actual triggers start from the second pulse. The stop of Run must be SW controlled (i.e. bit[2] = 0); 11 = LVDS CONTROLLED (VME only). It is like option 01 but using LVDS (RUN) instead of S-IN. The LVDS can be set using registers 0x811C and 0x81A0 (see respectively Sec. 1.23 and 1.36).</p>
[2]	<p>Acquisition Start/Arm (default value is 0). When bits[1:0] = 00, this bit acts as a Run Start/Stop. When bits[1:0] = 01, 10, 11, this bit arms the acquisition and the actual Start/Stop is controlled by an external signal. Options are: 0 = Acquisition STOP (if bits[1:0]=00); Acquisition DISARMED (others); 1 = Acquisition RUN (if bits[1:0]=00); Acquisition ARMED (others).</p>
[3]	<p>Trigger Counting Mode Selection. Options are: 0 = only accepted triggers are counted (default); 1 = all triggers are counted.</p>
[4]	Reserved.
[5]	<p>Memory Full Mode Selection (default value is 0). Options are: 0 = NORMAL. The board is full whenever all buffers are full; 1 = ONE BUFFER FREE. The board is full whenever Nb-1 buffers are full, where Nb is the overall number of buffers in which the channel memory is divided.</p>
[6]	<p>PLL Reference Clock Source (Desktop/NIM only). Default value is 0. Options are: 0 = internal oscillator (50 MHz); 1 = external clock from front panel CLK-IN connector. NOTE: this bit is reserved in case of VME boards.</p>
[7]	Reserved.
[8]	<p>LVDS I/O Busy-In Enable (VME only). Default value is 0. This bit must be enabled to let the board accept the Busy signal as input on the LVDS I/Os. Options are: 0 = disabled; 1 = enabled. NOTE: this bit is supported only by VME boards and meaningful only if the LVDS new features are enabled (bit[8]=1 of register 0x811C, see Sec. 1.23), the LVDS I/O mode is set to nBusy/nVeto (register 0x81A0, see Sec. 1.36), and the LVDS I/Os are set as inputs (register 0x811C, see Sec. 1.23).</p>

[9]	<p>LVDS I/O Veto Enable (VME only). Default value is 0. The LVDS I/Os can be programmed to accept a Veto signal as input, or to transfer it as output. Options are: 0 = disabled (default); 1 = enabled.</p> <p>NOTE: this bit is supported only by VME boards and meaningful only if the LVDS new features are enabled (bit[8]=1 of register 0x811C, see Sec. 1.23). Register 0x81A0 (see Sec. 1.36) should also be configured for nBusy/nVeto.</p>
[10]	Reserved.
[11]	<p>LVDS I/O RunIn Enable Mode (VME only) and START ON EDGE Enable for S-IN/GPI CONTROLLED Mode.</p> <p>- If LVDS CONTROLLED MODE is set (bit[1:0] = 0b11) and acquisition is armed (bit[2] = 1), this bit let the LVDS I/Os be set to accept a RunIn signal to control the acquisition upon two options. One is start/stop on level, where the start of the RUN is given at RunIn signal level high and the stop at RunIn signal level low. The other is start on edge, where the start of the RUN is given on the rising edge of the RunIn signal, while the Stop must be only on software command:</p> <p>0 = starts on RunIn level (default); 1 = starts on RunIn rising edge.</p> <p>NOTE: this bit is meaningful only if the LVDS new features are enabled (bit[8]=1 of register 0x811C, see Sec. 1.23). Register 0x81A0 (see Sec. 1.36) must also be configured for nBusy/nVeto.</p> <p>NOTE: this register is valid from ROC FPGA fw revision 4.16 on.</p> <p>- If S-IN/GPI CONTROLLED Mode is set (bit[1:0] = 0b01) and acquisition is armed (bit[2] = 1): 0 = Start/Stop run on S-IN/GPI level (default); 1 = Start run on S-IN/GPI rising edge (stop must be by software command: bit[2] = 0).</p> <p>NOTE: options bit[11] = 1 is valid from ROC FPGA fw revision 4.22 on.</p>
[12]	<p>Vetoin as veto for TRG-OUT (VME boards only). When the LVDS Vetoin signal is enabled (bit[9] = 1 in the 0x8100 register), this bit permits to use Vetoin to inhibit the triggers on TRG-OUT connector. The duration of the veto signal on TRG-OUT can be optionally extended by a time value set in the 0x81C4 register (see Sec. 1.38). Such function is useful in particular cases of synchronization of a multi-board system.</p> <p>Options are: 0 = Vetoin not used (default) 1 = Vetoin used for TRG-OUT inhibit</p> <p>NOTE: this bit is reserved in case of Desktop and NIM digitizers or ROC FPGA firmware rel. < 4.16 .</p>
[31:13]	Reserved.

1.17 Acquisition Status

This register monitors a set of conditions related to the acquisition status.

Address 0x8104
 Mode R
 Attribute C

Bit	Description
[1:0]	Reserved.
[2]	Acquisition Status. It reflects the status of the acquisition and drives the front panel 'RUN' LED. Options are: 0 = acquisition is stopped ('RUN' is off); 1 = acquisition is running ('RUN' lits).
[3]	Event Ready. Indicates if any events are available for readout. Options are: 0 = no event is available for readout; 1 = at least one event is available for readout. NOTE: the status of this bit must be considered when managing the readout from the digitizer.
[4]	Event Full. Indicates if the board memory has reached the FULL condition (i.e. maximum number of storable events). Options are: 0 = the board is not FULL; 1 = the board is FULL.
[5]	Clock Source. Indicates the clock source status. Options are: 0 = internal (PLL uses the internal 50 MHz oscillator as reference); 1 = external (PLL uses the external clock on CLK-IN connector as reference).
[6]	Reserved.
[7]	PLL Unlock Detect. This bit flags a PLL unlock condition. Options are: 0 = PLL has had an unlock condition since the last register read access; 1 = PLL has not had any unlock condition since the last register read access. NOTE: flag can be restored to 1 via read access to register 0xEF04 (see Sec. 1.40).
[8]	Board Ready. This flag indicates if the board is ready for acquisition (PLL and ADCs are correctly synchronized). Options are: 0 = board is not ready to start the acquisition; 1 = board is ready to start the acquisition. NOTE: this bit should be checked after software reset to ensure that the board will enter immediately in run mode after the RUN mode setting; otherwise, a latency between RUN mode setting and Acquisition start might occur.
[14:9]	Reserved.
[15]	S-IN (VME boards) or GPI (DT/NIM boards) Status. Reads the logical level on S-IN (GPI) front panel connector.
[16]	TRG-IN Status. Reads the logical level on TRG-IN front panel connector.
[31:17]	Reserved.

1.18 Software Trigger

Writing this register causes a software trigger generation which is propagated to all the enabled channels of the board.

Address 0x8108
Mode W
Attribute C

Bit	Description
[31:0]	Write whatever value to generate a software trigger.

1.19 Global Trigger Mask

This register sets which signal can contribute to the global trigger generation.

Address 0x810C
 Mode R/W
 Attribute C

Bit	Description
[7:0]	<p>Bit n corresponds to the trigger request from group n that participates to the global trigger generation (n = 0,...,3 for DT and NIM; n = 0,...,7 for VME boards).</p> <p>Options are:</p> <p>0 = trigger request is not sensed for global trigger generation; 1 = trigger request participates in the global trigger generation.</p> <p>NOTE: in case of DT and NIMboards, only bits[3:0] are meaningful, while bits[7:4] are reserved.</p>
[19:8]	Reserved.
[23:20]	Majority Coincidence Window. Sets the time window for the majority coincidence in units of the Trigger Clock (8 ns). Majority level must be set different from 0 through bits[26:24].
[26:24]	<p>Majority Level. Sets the majority level for the global trigger generation. For a level m, the trigger fires when at least m+1 of the enabled trigger requests (bits[7:0] or [3:0]) are over-threshold inside the majority coincidence window (bits[23:20]).</p> <p>NOTE: The majority level must be smaller than the number of trigger requests enabled via bits[7:0] mask (or [3:0]).</p>
[27]	<p>TRG-IN used as gate. When enabled the TRG-IN is in logic AND with the group trigger request, which acquire when TRG-IN is high.</p> <p>Options are:</p> <p>0 = TRG-IN in logic OR with the enabled groups and SW trigger (default); 1 = TRG-IN in logic AND the enabled groups.</p> <p>NOTE: this bit must be used in conjunction with bit[10] of register 0x811C (see Sec. 1.23).</p> <p>NOTE: this bit is reserved for ROC FPGA firmware release less than 4.9.</p>
[28]	Reserved.
[29]	<p>LVDS Trigger (VME boards only). When enabled, the trigger from LVDS I/O participates to the global trigger generation (in logic OR).</p> <p>Options are:</p> <p>0 = disabled; 1 = enabled.</p>
[30]	<p>External Trigger (default value is 1). When enabled, the external trigger on TRG-IN participates to the global trigger generation in logic OR with the other enabled signals.</p> <p>Options are:</p> <p>0 = disabled; 1 = enabled.</p>
[31]	<p>Software Trigger (default value is 1). When enabled, the software trigger participates to the global trigger signal generation in logic OR with the other enabled signals.</p> <p>Options are:</p> <p>0 = disabled; 1 = enabled.</p>

1.20 Front Panel TRG-OUT (GPO) Enable Mask

This register sets which signal can contribute to generate the signal on the front panel TRG-OUT LEMO connector (GPO in case of DT and NIM boards).

Address 0x8110
 Mode R/W
 Attribute C

Bit	Description
[7:0]	<p>This mask sets the trigger requests participating in the TRG-OUT (GPO). Bit n corresponds to the trigger request from group n.</p> <p>Options are:</p> <p>0 = Trigger request does not participate to the TRG-OUT (GPO) signal; 1 = Trigger request participates to the TRG-OUT (GPO) signal.</p> <p>NOTE: In case of DT and NIM boards, only bits[3:0] are meaningful while bit[7:4] are reserved.</p>
[9:8]	<p>TRG-OUT (GPO) Generation Logic. The enabled trigger requests (bits [7:0] or [3:0]) can be combined to generate the TRG-OUT (GPO) signal.</p> <p>Options are:</p> <p>00 = OR; 01 = AND; 10 = Majority; 11 = Reserved.</p>
[12:10]	<p>Majority Level. Sets the majority level for the TRG-OUT (GPO) signal generation. Allowed level values are between 0 and 7 for VME boards, and between 0 and 3 for DT and NIM boards. For a level m, the trigger fires when at least m+1 of the trigger requests are generated by the enabled channels (bits [7:0] or [3:0]).</p>
[28:13]	Reserved.
[29]	<p>LVDS Trigger Enable (VME boards only). LVDS connectors programmed as inputs (according to registers 0x811C and 0x81A0, see respectively Sec. 1.23 and 1.36) can participate in the TRG-OUT (GPO) signal generation, in logic OR with the other enabled signals.</p> <p>Options are:</p> <p>0 = disabled; 1 = enabled.</p>
[30]	<p>External Trigger (default value is 1). When enabled, the external trigger on TRG-IN can participate in the TRG-OUT (GPO) signal generation in logic OR with the other enabled signals.</p> <p>Options are:</p> <p>0 = disabled; 1 = enabled.</p>
[31]	<p>Software Trigger (default value is 1). When enabled, the software trigger can participate in the TRG-OUT (GPO) signal generation in logic OR with the other enabled signals.</p> <p>Options are:</p> <p>0 = disabled; 1 = enabled.</p>

1.21 Post Trigger

The value of this register is used to set the number of post-trigger samples, that is the number of further samples that are written by the FPGA in the channel memory, when a trigger occurs, before to freeze the buffer. The number of post trigger samples is:

$$N_{post} = PostTriggerValue + ConstantLatency$$

where:

N_{post} = number of post trigger samples.

$PostTriggerValue$ = content of this register.

$ConstantLatency$ = constant number of added samples due to the latency associated to the trigger processing logic in the ROC FPGA. The value of this constant depends on the trigger source used and on the sampling frequency (Decimation option), and can change between different firmware revisions.

Address	0x8114
Mode	R/W
Attribute	C

Bit	Description
[31:0]	PostTriggerValue

1.22 LVDS I/O Data

This register allows to read out the logic level of the LVDS I/Os if the LVDS pins are configured as outputs, and to set the logic level of the LVDS I/Os if the pins are configured as inputs.

NOTE: this register is supported by VME boards only.

Address	0x8118
Mode	R/W
Attribute	C

Bit	Description
[15:0]	LVDS I/O Data (VME boards only). It is the logic level of the corresponding nth LVDS I/O to read out or write, according to its direction (0x811C, bit[5:2], see Sec. 1.23). A write operation sets the corresponding pin logic state if configured as output, while a read operation returns the logic state of the corresponding pin if configured as input. In case of Old LVDS I/O Features (0x811C, bit[8] = 0, see Sec. 1.23), the general purpose I/O option must be set (0x811C, bit[7:6] = 00, see Sec. 1.23). In case of New LVDS I/O Features (0x811C, bit[8] = 1, see Sec. 1.23), REGISTER mode must be set (0000 option in the 0x81A0 register, see Sec. 1.36).
[31:16]	Reserved.

1.23 Front Panel I/O Control

This register manages the front panel I/O connectors. Default value is 0x0000000.

Address 0x811C
 Mode R/W
 Attribute C

Bit	Description
[0]	LEMO I/Os Electrical Level. This bit sets the electrical level of the front panel LEMO connectors: TRG-IN, TRG-OUT (GPO in case of DT and NIM boards), S-IN (GPI in case of DT and NIM boards). Options are: 0 = NIM I/O levels; 1 = TTL I/O levels.
[1]	TRG-OUT Enable (VME boards only). Enables the TRG-OUT LEMO front panel connector. Options are: 0 = enabled (default); 1 = high impedance. NOTE: this bit is reserved in case of DT and NIM boards.
[2]	LVDS I/O [3:0] Direction (VME boards only). Sets the direction of the signals on the first 4-pin group of the LVDS I/O connector. Options are: 0 = input; 1 = output. NOTE: this bit is reserved in case of DT and NIM boards.
[3]	LVDS I/O [7:4] Direction (VME boards only). Sets the direction of the second 4-pin group of the LVDS I/O connector. Options are: 0 = input; 1 = output. NOTE: this bit is reserved in case of DT and NIM boards.
[4]	LVDS I/O [11:8] Direction (VME boards only). Sets the direction of the third 4-pin group of the LVDS I/O connector. Options are: 0 = input; 1 = output. NOTE: this bit is reserved in case of DT and NIM boards.
[5]	LVDS I/O [15:12] Direction (VME boards only). Sets the direction of the fourth 4-pin group of the LVDS I/O connector. Options are: 0 = input; 1 = output. NOTE: this bit is reserved in case of DT and NIM boards.
[7:6]	LVDS I/O Signal Configuration (VME boards only). Valid for old LVDS I/O features only (0x811C, bit[8] = 0, see Sec. 1.23). Options are: 00 = general purpose I/Os: LVDS I/Os work as register; I/O direction is configured through bit[5:2]; the logic level is read out or set in the 0x8118 register (see Sec. 1.22). 01 = programmed I/Os: direction and function of the LVDS signals are fixed (see the tabled signal pinout in the digitizer User Manual [RD1]). 10 = pattern mode: LVDS signals are inputs and their value is written into the header PATTERN field of the event (see the digitizer User Manual [RD1]); 11 = reserved. NOTE: these bits are reserved in case of DT and NIM boards.

[8]	<p>LVDS I/O New Features Selection (VME boards only). Options are: 0 = LVDS old features; 1 = LVDS new features. The new features options can be configured through register 0x81A0 (see Sec. 1.36). Please, refer to the User Manual for all details [RD1].</p> <p>NOTE: LVDS I/O New Features option is valid from motherboard firmware revision 3.8 on.</p> <p>NOTE: this bit is reserved in case of DT and NIM boards.</p>
[9]	<p>LVDS I/Os Pattern Latch Mode (VME boards only). Options are: 0 = Pattern (i.e. 16-pin LVDS status) is latched when the (internal) global trigger is sent to channels, in consequence of an external trigger. It accounts for post-trigger settings and input latching delays; 1 = Pattern (i.e. 16-pin LVDS status) is latched when an external trigger arrives.</p> <p>NOTE: this bit is reserved in case of DT and NIM boards.</p>
[10]	<p>TRG-IN control. The board trigger logic can be synchronized either with the edge of the TRG-IN signal, or with its whole duration.</p> <p>NOTE: this bit must be used in conjunction with bit[11] = 0.</p> <p>Options are: 0 = trigger is synchronized with the edge of the TRG-IN signal; 1 = trigger is synchronized with the whole duration of the TRG-IN signal.</p>
[11]	<p>TRG-IN to Mezzanines (channels). Options are: 0 = the TRG-IN signal is processed by the motherboard and sent to mezzanine (default). The trigger logic is then synchronized with TRG-IN; 1 = TRG-IN is directly sent to the mezzanines with no mother board processing nor delay.</p> <p>NOTE: if this bit is set to 1, then bit[10] is ignored.</p>
[13:12]	Reserved.
[14]	<p>Force TRG-OUT (GPO). This bit can force TRG-OUT (GPO in case of DT and NIM boards) test logical level if bit[15] = 1. Options are: 0 = Force TRG-OUT (GPO) to 0; 1 = Force TRG-OUT (GPO) to 1.</p>
[15]	<p>TRG-OUT (GPO) Mode. Options are: 0 = TRG-OUT (GPO) is an internal signal (according to bits[17:16]); 1 = TRG-OUT (GPO) is a test logic level set via bit[14].</p>
[17:16]	<p>TRG-OUT (GPO) Mode Selection. Options are: 00 = Trigger: TRG-OUT/GPO propagates the internal trigger sources according to register 0x8110 (see Sec. 1.20); 01 = Motherboard Probes: TRG-OUT/GPO is used to propagate signals of the motherboards according to bits[19:18]; 10 = Channel Probes: TRG-OUT/GPO is used to propagate signals of the mezzanines (Channel Signal Virtual Probe); 11 = S-IN (GPI) propagation.</p>
[19:18]	<p>Motherboard Virtual Probe Selection (to be propagated on TRG-OUT/GPO). Options are: 00 = RUN/delayedRUN: this is the RUN in case of ROC FPGA firmware rel. less than 4.12. This probe can be selected according to bit[20]. 01 = CLKOUT: this clock is synchronous with the sampling clock of the ADC and this option can be used to align the phase of the clocks in different boards; 10 = CLK Phase; 11 = BUSY/UNLOCK: this is the board BUSY in case of ROC FPGA firmware rel. 4.5 or lower. This probe can be selected according to bit[20].</p>

[20]	<p>According to bits[19:18], this bit selects the probe to be propagated on TRG-OUT . If bits[19:18] = 00, then bit[20] options are: 0 = RUN, the signal is active when the acquisition is running and it is synchronized with the start run. This option must be used to synchronize the start/stop of the acquisition through the TRG-OUT->TR-IN or TRG-OUT->S-IN (GPI) daisy chain. 1 = delayedRUN. This option can be used to debug the synchronization when the start/stop is propagated through the LVDS I/O (VME boards). If bits[19:18] = 11, then bit[20] options are: 0 = Board BUSY; 1 = PLL Lock Loss.</p> <p>NOTE: this bit is reserved in case of ROC FPGA firmware rel. 4.5 or lower.</p> <p>NOTE: this bit corresponds to BUSY/UNLOCK for ROC FPGA firmware rel. less than 4.12.</p>
[22:21]	<p>Pattern Configuration. Configures the information given by the 16-bit PATTERN field in the header of the event format (TRG OPTIONS field in case of DT and NIM boards). Option are: 00 = PATTERN: 16-bit pattern latched on the 16 LVDS signals as one trigger arrives (default); <p>NOTE: 00 is meaningless in case of DT and NIM boards.</p> 01 = EVENT TRIGGER SOURCE: 16-bit PATTERN/TRG OPTIONS indicates the trigger source causing the event acquisition; 10 = EXTENDED TRIGGER TIME TAG: enables the Trigger Time Tag information over 48 bits. The 16 most significant bits are given by the 16-bit PATTERN/TRG OPTIONS field, while the remaining 32 ones are given by the TRIGGER TIME TAG information in the header of the event format (roll-over bit is not managed). 11 = NOT USED: if configured, it acts like 00 setting.</p> <p>NOTE: Refer to the Event Structure section of the digitizer User Manual for a complete information [RD1][RD2][RD3].</p>
[31:23]	Reserved.

1.24 Group Enable Mask

This register enables/disables selected groups to participate in the event readout.

WARNING: this register must not be modified while the acquisition is running.

Address 0x8120
 Mode R/W
 Attribute C

Bit	Description
[7:0]	<p>Group Enable Mask. Bit n can enable/disable group n to participate in the event readout.</p> <p>Options are:</p> <p>0: disabled; 1: enabled.</p> <p>NOTE: this function concerns only bits[3:0] in case of DT and NIM boards.</p>
[31:8]	<p>Reserved.</p> <p>NOTE: bits[31:4] are reserved in case of DT and NIM boards.</p>

1.25 ROC FPGA Firmware Revision

This register contains the motherboard FPGA (ROC) firmware revision information.
The complete format is:

Firmware Revision = X.Y (16 lower bits)

Firmware Revision Date = Y/M/DD (16 higher bits)

EXAMPLE 1: revision 3.08, November 12th, 2007 is 0x7B120308.

EXAMPLE 2: revision 4.09, March 7th, 2016 is 0x03070409.

NOTE: the nibble code for the year makes this information to roll over each 16 years.

Address	0x8124
Mode	R
Attribute	C

Bit	Description
[7:0]	ROC Firmware Minor Revision Number (Y).
[15:8]	ROC Firmware Major Revision Number (X).
[31:16]	ROC Firmware Revision Date (Y/M/DD).

1.26 Event Stored

This register contains the number of events currently stored in the Output Buffer.

NOTE: the value of this register cannot exceed the maximum number of available buffers according to the register address 0x800C (see Sec. 1.13).

Address 0x812C
Mode R
Attribute C

Bit	Description
[31:0]	Number of the current events stored in the Output Buffer.

1.27 Voltage Level Mode Configuration

When the Voltage Level Mode is enabled (bit[2:0] = 100 (bin) of register 0x8144, see Sec. [1.30](#)), this register sets the DAC value to be provided on the front panel MON/Sigma output LEMO connector: 1 LSB = 0.244 mV, terminated on 50 Ohm.

NOTE: this register is supported by VME boards only.

Address	0x8138
Mode	R/W
Attribute	C

Bit	Description
[11:0]	DAC Voltage Setting (VME boards only). The corresponding output value is multiplied by 0.244 mV.
[31:12]	Reserved

1.28 Software Clock Sync

At power-on, a Sync command is issued by the firmware to the ADCs to synchronize all of them to the clock of the board. In the standard operating, this command is not required to be repeated by the user.

A write access to this register (any value) forces the PLL to re-align all the clock outputs with the reference clock.

EXAMPLE: in case of Daisy chain clock distribution among VME boards, during the initialization and configuration, the reference clocks along the Daisy chain can be unstable and a temporary loss of lock may occur in the PLLs; although the lock is automatically recovered once the reference clocks return stable, it is not guaranteed that the phase shift returns to a known state. This command allows the board to restore the correct phase shift between the CLK-IN and the internal clocks.

NOTE: this register is supported by VME boards only.

NOTE: the command must be issued starting from the first to the last board in the clock chain.

Address	0x813C
Mode	W
Attribute	C

Bit	Description
[31:0]	Write whatever value to generate a Sync command.

1.29 Board Info

This register contains the specific information of the board, such as the digitizer family, the channel memory size and the channel density.

Address	0x8140
Mode	R
Attribute	C

Bit	Description
[7:0]	Digitizer Family Code: 0x04 = 740 digitizer family.
[15:8]	Channel Memory Size Code. Options are: 0x02: each channel is equipped with 192 kS acquisition memory; 0x10: each channel is equipped with 1.5 MS acquisition memory.
[23:16]	Equipped Groups Number. Options are: 0x04 = 4 groups (DT and NIM boards); 0x08 = 8 groups (VME boards). NOTE: if this number is lower than the physical group number, there could be a communication problem with some of the mezzanines.
[31:24]	Reserved.

1.30 Analog Monitor Mode

This register selects which output mode is provided on the MON/Sigma front panel LEMO connector.

NOTE: this register is supported by VME boards only.

Address 0x8144
 Mode R/W
 Attribute C

Bit	Description
[2:0]	<p>Analog Monitor Mode (VME boards only). Options are: 000 = Trigger Majority mode; 001 = Test mode; 010 = reserved; 011 = Buffer Occupancy mode; 100 = Voltage Level mode; Others = reserved. Please, refer to the digitizer User Manual for a detailed description [RD1].</p>
[31:3]	Reserved.

1.31 Event Size

This register contains the current available event size in 32-bit words. The value is updated after a complete readout of each event.

Address 0x814C
Mode R
Attribute C

Bit	Description
[31:0]	Event Size (32-bit words).

1.32 Fan Speed Control

This register manages the on-board fan speed in order to guarantee an appropriate cooling according to the internal temperature variations.

NOTE: from revision 4 of the motherboard PCB (register 0xF04C of the Configuration ROM, see Sec. [1.70](#)), the automatic fan speed control has been implemented, and it is supported by ROC FPGA firmware revision greater than 4.4 (register 0x8124, see Sec. [1.25](#)).

Independently of the revision, the user can set the fan speed high by setting bit[3] = 1. Setting bit[3] = 0 will restore the automatic control for revision 4 or higher, or the low fan speed in case of revisions lower than 4.

NOTE: this register is supported by Desktop (DT) boards only.

Address	0x8168
Mode	R/W
Attribute	C

Bit	Description
[2:0]	Reserved: Must be 0.
[3]	Fan Speed Mode. Options are: 0 = slow speed or automatic speed tuning; 1 = high speed.
[5:4]	Reserved: Must be 1.
[31:6]	Reserved: Must be 0.

1.33 Memory Buffer Almost Full Level

This register allows to set the level for the Almost Full generation. The written value (ALMOST FULL LEVEL) represents the number of buffers that must be full of data before to assert the BUSY signal. This register takes part in the BUSY propagation among multiple boards.

NOTE: if this register is set to 0, the ALMOST FULL is a FULL.

For the Almost Full description, please refer to the Acquisition Synchronization section of the digitizer User Manual [\[RD1\]\[RD2\]\[RD3\]](#).

Address	0x816C
Mode	R/W
Attribute	C

Bit	Description
[10:0]	ALMOST FULL LEVEL.
[31:11]	Reserved.

1.34 Run/Start/Stop Delay

This register sets the delay in the Start Run of the board either the command is issued by software, or by hardware through a single-ended (via S-IN/GPI or TRG-IN connectors) or differential (via LVDS I/O connector) input signal. This delay especially occurs in the daisy chain propagation of the run signal in a multi-board system. The latency, mainly due to the cable length and the board's internal circuitry, can be compensated by properly delaying the start of run for each board in the chain. The delay value to set is usually zero for the last board and rises going backwards along the chain.

Address 0x8170
 Mode R/W
 Attribute C

Bit	Description
[7:0]	Delay value in steps of 16 ns.
[31:8]	Reserved.

1.35 Board Failure Status

This register informs on the cause of a board fail. In event of a failure, bit[26] in the second word of the event format header is set to 1 during data readout (refer to the event structure description in the User Manual of the digitizer **[RD1][RD2][RD3]**). Reading at this register checks which kind of error occurred.

NOTE: in case of problems with the board, the user is recommended to contact CAEN for support.

Address	0x8178
Mode	R
Attribute	C

Bit	Description
[3:0]	Reserved.
[4]	PLL Lock Loss. Options are: 0 = no error; 1 = PLL Lock Loss occurred.
[31:5]	Reserved.

1.36 Front Panel LVDS I/O New Features

If the LVDS I/O new features are enabled (bit[8] = 1 of 0x811C, see Sec. 1.23), this register programs the functions of the front panel LVDS I/O 16-pin connector. It is possible to configure the LVDS I/O pins by group of four (4). Options are:

- 1) 0000 = REGISTER, where the four LVDS I/O pins act as register (read/write according to the configured input/output option);
- 2) 0001 = TRIGGER, where each group of four LVDS I/O pins can be configured to receive an input trigger for each channel (DPP Firmware only), or to propagate out the trigger request;
- 3) 0010 = nBUSY/nVETO, where each group of four LVDS I/O pins can be configured as inputs (0 = nBusyIn, 1 = nVetoIn, 2 = nTrigger In, 3 = nRun In) or as outputs (0 = nBusy, 1 = nVeto, 2 = nTrigger Out, 3 = nRun);
- 4) 0011 = LEGACY, that is to say according to the old LVDS I/O configuration (i.e. ROC FPGA firmware revisions lower than 3.8), where the LVDS can be configured as 0 = nclear TTT, and 1 = 2 = 3 = reserved in case of input LVDS setting, while they can be configured as 0 = Busy, 1 = Data ready, 2 = Trigger, 3 = Run in case of output LVDS setting. Please refer to the Front Panel LVDS I/Os section of the digitizer User Manual for detailed description [RD1].

NOTE: LVDS I/O new features are supported from ROC FPGA firmware revision 3.8 on.

NOTE: this register is supported by VME boards only.

Address	0x81A0
Mode	R/W
Attribute	C

Bit	Description
[3:0]	LVDS I/O pins[3:0] Configuration.
[7:4]	LVDS I/O pins[7:4] Configuration.
[11:8]	LVDS I/O pins[11:8] Configuration
[15:12]	LVDS I/O pins[15:12] Configuration.
[16]	<p>This bit permits selecting whether the nTrigger signal, when configured as output (in nBusy/nVeto LVDS I/O mode), is a copy of the signal sent on the TRG-OUT connector or a copy of the acquisition common trigger.</p> <p>Options are:</p> <p>0 = nTrigger output is a copy of TRG-OUT signal 1 = nTrigger output is a copy of the acquisition common trigger.</p> <p>NOTE: this bit is reserved for ROC FPGA firmware revisions less than 4.9.</p>
[31:17]	Reserved.

1.37 Buffer Occupancy Gain

If the Buffer Occupancy Mode is selected (bit[2:0] = 011 of 0x8144, see Sec. [1.30](#)), the LEMO MON/Sigma output connector provides a voltage level whose amplitude increases in fixed steps exactly with the number of events in the event buffer. Each step of the output voltage level is 0.976 mV. A gain can be applied to the step by this register. Allowed values are in the range [0:A]. The default value, 0, means no gain applied while writing 0xn means that the fixed step is 0.976×2^n mV.

NOTE: this register is supported from ROC FPGA firmware revision 4.9 on.

NOTE: this register is supported by VME boards only.

Address	0x81B4
Mode	R/W
Attribute	C

Bit	Description
[3:0]	Buffer Occupancy Gain.
[31:4]	Reserved.

1.38 Extended Veto Delay

This register is valid for VME boards only and set the duration of the Extended VetoIn signal for trigger inhibit on TRG-OUT when bit[12]=1 of 0x8100 register (see Sec. 1.16). Such function is useful in particular cases of synchronization of a multi-board system.

NOTE: This register is valid from ROC FPGA fw revision 4.16 on.

Address	0x81C4
Mode	R/W
Attribute	C

Bit	Description
[15:0]	Extended VetoIn duration value in units of the Trigger Clock (8 ns).
[31:16]	Reserved.

1.39 Readout Control

This register is mainly intended for VME boards, anyway some bits are applicable also for DT and NIM boards.

Address 0xEF00
 Mode R/W
 Attribute C

Bit	Description
[2:0]	<p>VME Interrupt Level (VME boards only). Options are: 0 = VME interrupts are disabled; 1,..,7 = sets the VME interrupt level.</p> <p>NOTE: these bits are reserved in case of DT and NIM boards.</p>
[3]	<p>Optical Link Interrupt Enable. Options are: 0 = Optical Link interrupts are disabled; 1 = Optical Link interrupts are enabled.</p>
[4]	<p>VME Bus Error / Event Aligned Readout Enable (VME boards only). Options are: 0 = VME Bus Error / Event Aligned Readout disabled (the module sends a DTACK signal until the CPU inquires the module); 1 = VME Bus Error / Event Aligned Readout enabled (the module is enabled either to generate a Bus Error to finish a block transfer or during the empty buffer readout in D32). NOTE: this bit is reserved (must be 1) in case of DT and NIM boards.</p>
[5]	<p>VME Align64 Mode (VME boards only). Options are: 0 = 64-bit aligned readout mode disabled; 1 = 64-bit aligned readout mode enabled. NOTE: this bit is reserved (must be 0) in case of DT and NIM boards.</p>
[6]	<p>VME Base Address Relocation (VME boards only). Options are: 0 = Address Relocation disabled (VME Base Address is set by the on-board rotary switches); 1 = Address Relocation enabled (VME Base Address is set by register 0xEF0C, see Sec. 1.42). NOTE: this bit is reserved (must be 0) in case of DT and NIM boards.</p>
[7]	<p>Interrupt Release mode (VME boards only). Options are: 0 = Release On Register Access (RORA): this is the default mode, where interrupts are removed by disabling them either by setting VME Interrupt Level to 0 (VME Interrupts) or by setting Optical Link Interrupt Enable to 0; 1 = Release On Acknowledge (ROAK). Interrupts are automatically disabled at the end of a VME interrupt acknowledge cycle (INTACK cycle). NOTE: ROAK mode is supported only for VME interrupts. ROAK mode is not supported on interrupts generated over Optical Link. NOTE: this bit is reserved (must be 0) in case of DT and NIM boards.</p>

[8]	<p>Extended Block Transfer Enable (VME boards only). Selects the memory interval allocated for block transfers.</p> <p>Options are:</p> <p>0 = Extended Block Transfer Space is disabled, and the block transfer region is a 4kB in the 0x0000 - 0x0FFC interval;</p> <p>1 = Extended Block Transfer Space is enabled, and the block transfer is a 16 MB in the 0x00000000 - 0xFFFFFFFFC interval.</p> <p>NOTE: in Extended mode, the board VME Base Address is only set via the on-board [31:28] rotary switches or bits[31:28] of register 0xEF10 (see Sec. 1.43).</p> <p>NOTE: this register is reserved in case of DT and NIM boards.</p>
[31:9]	Reserved.

1.40 Readout Status

This register contains information related to the readout.

Address 0xEF04
 Mode R
 Attribute C

Bit	Description
[0]	Event Ready. Indicates if there are events stored ready for readout. Options are: 0 = no data ready; 1 = event ready.
[1]	Reserved.
[2]	Bus Error (VME boards) / Slave-Terminated (DT/NIM boards) Flag. Options are: 0 = no Bus Error occurred (VME boards) or no terminated transfer (DT/NIM boards); 1 = a Bus Error occurred (VME boards) or one transfer has been terminated by the digitizer in consequence of an unsupported register access or block transfer prematurely terminated in event aligned readout (DT/NIM). NOTE: this bit is reset after register readout at 0xEF04 (see Sec. 1.40).
[3]	VME FIFO Flag. Options are: 0 = VME FIFO not empty; 1 = VME FIFO is empty.
[31:4]	Reserved.

1.41 Board ID

The meaning of this register depends on which VME crate it is inserted in.

In case of VME64X crate versions, this register can be accessed in read mode only and it contains the GEO address of the module picked from the backplane connectors; when CBLT is performed, the GEO address will be contained in the Board ID field of the Event header (see the User Manual for further details [\[RD1\]](#)).

In case of other crate versions, this register can be accessed both in read and write mode, and it allows to write the correct GEO address (default setting = 0) of the module before CBLT operation. GEO address will be contained in the Board ID field of the Event header (see the User Manual for further details [\[RD1\]](#)).

NOTE: this register is supported by VME boards only.

Address	0xEF08
Mode	R/W
Attribute	C

Bit	Description
[4:0]	GEO Address (VME boards only).
[31:5]	Reserved.

1.42 MCST Base Address and Control

This register configures the board for the VME Multicast Cycles.

NOTE: this register is supported by VME boards only.

Address	0xEF0C
Mode	R/W
Attribute	C

Bit	Description
[7:0]	These bits contain the most significant bits of the MCST/CBLT address of the module set via VME, that is the address used in MCST/CBLT operations.
[9:8]	Board Position in Daisy chain. Options are: 00 = board disabled; 01 = last board; 10 = first board; 11 = intermediate board.
[31:10]	Reserved.

1.43 Relocation Address

If address relocation is enabled through register 0xEF00 (bit[6] = 1, see Sec. 1.39), this register sets the VME Base Address of the module.

NOTE: this register is supported by VME boards only.

Address	0xEF10
Mode	R/W
Attribute	C

Bit	Description
[15:0]	These bits contain the A31...A16 bits of the address of the module. If bit[6] = 1 of 0xEF00 (see Sec. 1.39), they set the VME Base Address of the module.
[31:16]	Reserved.

1.44 Interrupt Status/ID

This register contains the STATUS/ID that the module places on the VME data bus during the Interrupt Acknowledge cycle.

NOTE: this register is supported by VME boards only.

Address	0xEF14
Mode	R/W
Attribute	C

Bit	Description
[31:0]	STATUS/ID (VME boards only).

1.45 Interrupt Event Number

This register sets the number of events that causes an interrupt request. If interrupts are enabled, the module generates a request whenever it has stored in memory a Number of Events > INTERRUPT EVENT NUMBER.

Address 0xEF18
Mode R/W
Attribute C

Bit	Description
[9:0]	INTERRUPT EVENT NUMBER.
[31:10]	Reserved.

1.46 Max Number of Events per BLT

This register sets the maximum number of complete events which has to be transferred for each block transfer (via VME BLT/CBLT cycles, or block readout through USB or Optical Link).

Address 0xEF1C
Mode R/W
Attribute C

Bit	Description
[9:0]	MAX NUM EVENT PER BLT.
[31:10]	Reserved.

1.47 Scratch

This register can be used to write/read words for test purposes.

Address 0xEF20
Mode R/W
Attribute C

Bit	Description
[31:0]	SCRATCH.

1.48 Software Reset

All the digitizer registers can be set back to their default values on software reset command by writing any value at this register, or by system reset from backplane in case of VME boards.

Address 0xEF24
Mode W
Attribute C

Bit	Description
[31:0]	Whatever value written at this location issues a software reset. All registers are set to their default values (actual settings are lost).

1.49 Software Clear

All the digitizer internal memories are cleared:

- automatically by the firmware at the start of each run;
- on software command by writing at this register;
- by hardware (VME boards only) through the LVDS interface properly configured.

A clear command does not change the registers actual value, except for resetting the following registers:

- Event Stored;
- Event Size;
- Channel / Group n Buffer Occupancy. This register resets also the trigger time stamp.

Address	0xEF28
Mode	W
Attribute	C

Bit	Description
[31:0]	Whatever value written at this location generates a software clear.

1.50 Configuration Reload

A write access of any value at this location causes a software reset, a reload of Configuration ROM parameters and a PLL reconfiguration.

Address	0xEF34
Mode	W
Attribute	C

Bit	Description
[31:0]	Write whatever value to perform a software reset, a reload of Configuration ROM parameters and a PLL reconfiguration.

1.51 Configuration ROM Checksum

This register contains information on 8-bit checksum of Configuration ROM space.

Address 0xF000
Mode R
Attribute C

Bit	Description
[7:0]	Checksum.
[31:8]	Reserved.

1.52 Configuration ROM Checksum Length BYTE 2

This register contains information on the third byte of the 3-byte checksum length (i.e. the number of bytes in Configuration ROM to checksum).

Address 0xF004
Mode R
Attribute C

Bit	Description
[7:0]	Checksum Length: bits[23:16].
[31:8]	Reserved.

1.53 Configuration ROM Checksum Length BYTE 1

This register contains information on the second byte of the 3-byte checksum length (i.e. the number of bytes in Configuration ROM to checksum).

Address 0xF008
Mode R
Attribute C

Bit	Description
[7:0]	Checksum Length: bits[15:8].
[31:8]	Reserved.

1.54 Configuration ROM Checksum Length BYTE 0

This register contains information on the first byte of the 3-byte checksum length (i.e. the number of bytes in Configuration ROM to checksum).

Address 0xF00C
Mode R
Attribute C

Bit	Description
[7:0]	Checksum Length: bits[7:0].
[31:8]	Reserved.

1.55 Configuration ROM Constant BYTE 2

This register contains the third byte of the 3-byte constant.

Address 0xF010
Mode R
Attribute C

Bit	Description
[7:0]	Constant: bits[23:16] = 0x83.
[31:8]	Reserved.

1.56 Configuration ROM Constant BYTE 1

This register contains the second byte of the 3-byte constant.

Address 0xF014
Mode R
Attribute C

Bit	Description
[7:0]	Constant: bits[15:8] = 0x84.
[31:8]	Reserved.

1.57 Configuration ROM Constant BYTE 0

This register contains the first byte of the 3-byte constant.

Address 0xF018
Mode R
Attribute C

Bit	Description
[7:0]	Constant: bits[7:0] = 0x01.
[31:8]	Reserved.

1.58 Configuration ROM C Code

This register contains the ASCII C character code (identifies this as CR space).

Address 0xF01C
Mode R
Attribute C

Bit	Description
[7:0]	ASCII 'C' Character Code.
[31:8]	Reserved.

1.59 Configuration ROM R Code

This register contains the ASCII R character code (identifies this as CR space).

Address 0xF020
Mode R
Attribute C

Bit	Description
[7:0]	ASCII 'R' Character Code.
[31:8]	Reserved.

1.60 Configuration ROM IEEE OUI BYTE 2

This register contains information on the third byte of the 3-byte IEEE Organizationally Unique Identifier (OUI).

Address 0xF024
Mode R
Attribute C

Bit	Description
[7:0]	IEEE OUI: bits[23:16].
[31:8]	Reserved.

1.61 Configuration ROM IEEE OUI BYTE 1

This register contains information on the second byte of the 3-byte IEEE Organizationally Unique Identifier (OUI).

Address 0xF028
Mode R
Attribute C

Bit	Description
[7:0]	IEEE OUI: bits[15:8].
[31:8]	Reserved.

1.62 Configuration ROM IEEE OUI BYTE 0

This register contains information on the first byte of the 3-byte IEEE Organizationally Unique Identifier (OUI).

Address 0xF02C
Mode R
Attribute C

Bit	Description
[7:0]	IEEE OUI: bits[7:0].
[31:8]	Reserved.

1.63 Configuration ROM Board Version

This register contains the board version information.

Address 0xF030
 Mode R
 Attribute C

Bit	Description
[7:0]	Board Version Code. Options are: 0x50 = V1740/VX1740/DT5740/N6740; 0x51 = V1740B/VX1740B; 0x52 = V1740C/VX1740C/DT5740C/N6740C; 0x53 = V1740A/VX1740A; 0x54 = V1740D/VX1740D/DT5740D/N6740D.
[31:8]	Reserved.

1.64 Configuration ROM Board Form Factor

This register contains the information of the board form factor.

Address 0xF034
Mode R
Attribute C

Bit	Description
[7:0]	Board Form Factor CAEN Code. Options are: 0x00 = VME64; 0x01 = VME64X; 0x02 = Desktop; 0x03 = NIM.
[31:8]	Reserved.

1.65 Configuration ROM Board ID BYTE 1

This register contains the MSB of the 2-byte board identifier.

Address 0xF038
Mode R
Attribute C

Bit	Description
[7:0]	Board Number ID: bits[15:8].
[31:8]	Reserved.

1.66 Configuration ROM Board ID BYTE 0

This register contains the LSB information of the 2-byte board identifier.

Address 0xF03C
Mode R
Attribute C

Bit	Description
[7:0]	Board Number ID: bits[7:0].
[31:8]	Reserved.

1.67 Configuration ROM PCB Revision BYTE 3

This register contains information on the fourth byte of the 4-byte hardware revision.

Address 0xF040
Mode R
Attribute C

Bit	Description
[7:0]	PCB Revision: bits[31:24].
[31:8]	Reserved.

1.68 Configuration ROM PCB Revision BYTE 2

This register contains information on the third byte of the 4-byte hardware revision.

Address 0xF044
Mode R
Attribute C

Bit	Description
[7:0]	PCB Revision: bits[23:16].
[31:8]	Reserved.

1.69 Configuration ROM PCB Revision BYTE 1

This register contains information on the second byte of the 4-byte hardware revision.

Address 0xF048
Mode R
Attribute C

Bit	Description
[7:0]	PCB Revision: bits[15:8].
[31:8]	Reserved.

1.70 Configuration ROM PCB Revision BYTE 0

This register contains information on the first byte of the 4-byte hardware revision.

Address 0xF04C
Mode R
Attribute C

Bit	Description
[7:0]	PCB Revision: bits[7:0].
[31:8]	Reserved.

1.71 Configuration ROM FLASH Type

This register contains information on which FLASH type (storing the FPGA firmware) is present on- board.

Address 0xF050
Mode R
Attribute C

Bit	Description
[7:0]	FLASH Type. Options are: 0x00 = 8 Mb FLASH; 0x01 = 32 Mb FLASH.
[31:8]	Reserved.

1.72 Configuration ROM Board Serial Number BYTE 1

This register contains information on the MSB of the board serial number.

Address 0xF080
Mode R
Attribute C

Bit	Description
[7:0]	Board Serial Number: bits[15:8].
[31:8]	Reserved.

1.73 Configuration ROM Board Serial Number BYTE 0

This register contains information on the LSB of the board serial number.

Address 0xF084
Mode R
Attribute C

Bit	Description
[7:0]	Board Serial Number: bits[7:0].
[31:8]	Reserved.

1.74 Configuration ROM VCXO Type

This register contains information on which type of VCXO is present on-board.

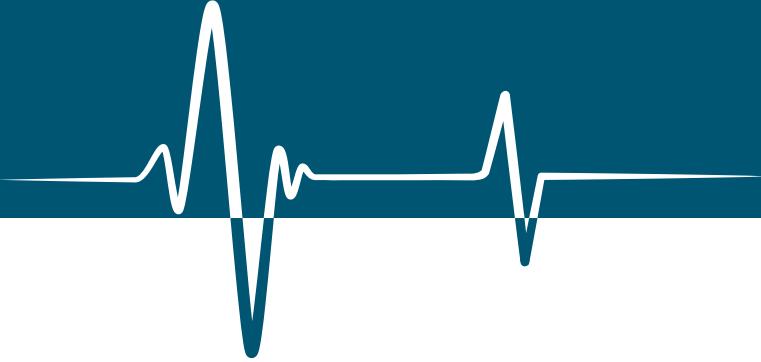
Address 0xF088
Mode R
Attribute C

Bit	Description
[31:0]	VCXO Type Code. Options for VME Digitizers are: 0 = AD9510 with 1 GHz; 1 = AD9510 with 500 MHz (not programmable); 2 = AD9510 with 500 MHz (programmable). Options for Desktop/NIM Digitizers are: Reserved (value = 0).

2 Technical Support

To contact CAEN specialists for requests on the software, hardware, and board return and repair, it is necessary a MyCAEN+ account on www.caen.it:

<https://www.caen.it/support-services/getting-started-with-mycaen-portal/>


All the instructions for use the Support platform are in the document:

A paper copy of the document is delivered with CAEN boards.

The document is downloadable for free in PDF digital format at:

<https://www.caen.it/safety-information-product-support>

CAEN S.p.A.
Via Vetraia 11
55049 - Viareggio
Italy
Phone +39 0584 388 398
Fax +39 0584 388 959
info@caen.it
www.caen.it

CAEN GmbH
Brunnenweg 9
64331 Weiterstadt
Germany
Phone +49 212 254 40 77
Fax +49 212 254 40 79
info@caen-de.com
www.caen-de.com

CAEN Technologies, Inc.
1 Edgewater Street - Suite 101
Staten Island, NY 10305
USA
Phone: +1 (718) 981-0401
Fax: +1 (718) 556-9185
info@caentechnologies.com
www.caentechnologies.com

CAENspa INDIA Private Limited
B205, BLDG42, B Wing,
Azad Nagar Sangam CHS,
Mhada Layout, Azad Nagar, Andheri (W)
Mumbai, Mumbai City,
Maharashtra, India, 400053
info@caen-india.in
www.caen-india.in

