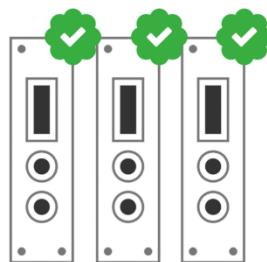


Register your device


Register your device to your **MyCAEN+** account and get access to our customer services, such as notification for new firmware or software upgrade, tracking service procedures or open a ticket for assistance. **MyCAEN+** accounts have a dedicated support service for their registered products. A set of basic information can be shared with the operator, speeding up the troubleshooting process and improving the efficiency of the support interactions.

MyCAEN+ dashboard is designed to offer you a direct access to all our after sales services. Registration is totally free, to create an account go to <https://www.caen.it/become-mycaenplus-user> and fill the registration form with your data.

1

create a MyCAEN+ account

2

register your devices

3

get support and more!

<https://www.caen.it/become-mycaenplus-user/>

Purpose of this Manual

This document is the A7236 AG7236 12/24/32 Channel 3.5 kV/1.5 mA (4W) Power Supply Boards user manual; it contains information about the installation, the configuration, and the use of the board.

Change Document Record

Date	Revision	Changes
7 April 2016	0	PRELIMINARY Release
28 April 2017	1	New SHV versions and Updated Operating Modes
12 September 2018	2	New ground configuration switches
3 September 2019	3	Channel Characteristic Table
12 March 2020	4	Updated Overview and Channel Characteristic Table
10 September 2020	5	Channel Characteristic Table
9 February 2021	6	Channel Characteristic Table
22 February 2021	7	Updated Output control and monitoring
4 March 2022	8	Updated Channel Characteristic Table

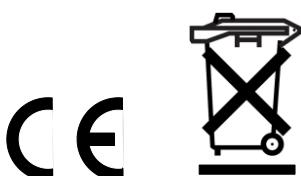
Symbols, abbreviated terms and notation

N.A.

Reference Documents

SY4527 Universal Multichannel Power Supply System User's Manual

Disclaimer


No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN SpA.

CAEN will repair or replace any product within the guarantee period if the Guarantor declares that the product is defective due to workmanship or materials and has not been caused by mishandling, negligence on behalf of the User, accident or any abnormal conditions or operations.

CAEN declines all responsibility for damages or injuries caused by an improper use of the Modules due to negligence on behalf of the User. It is strongly recommended to read thoroughly the CAEN User's Manual before any kind of operation. *CAEN reserves the right to change partially or entirely the contents of this Manual at any time and without giving any notice.*

Disposal of the Product *The product must never be dumped in the Municipal Waste. Please check your local regulations for disposal of electronics products.*

Made In Italy : We stress the fact that all the boards are made in Italy because in this globalized world, where getting the lowest possible price for products sometimes translates into poor pay and working conditions for the people who make them, at least you know that who made your board was reasonably paid and worked in a safe environment. (this obviously applies only to the boards marked "Made in Italy", we cannot attest to the manufacturing process of "third party" boards).

Index

1. Overview.....	4
Functional description	4
Channel Characteristic Table	5
Front Panel.....	6
Component Specifications	7
Packaging	7
Displays	7
Trimmers.....	7
External connections.....	7
<i>Multipin connector pin assignment</i>	7
Ground Configuration Switches	8
2. Safety and installation requirements	9
General safety information.....	9
Injury Precautions	9
Safety Terms and Symbols on the Product.....	9
Installation	9
3. Operating modes.....	10
Output control and monitoring	10
Channel STATUS Flag.....	10
Interlock protection.....	11

List of Figures

Fig. 1 – A7236 front panel (32, 12, 24 channels)	6
Fig. 2 – SW1 and SW2 switches on the A7236 board	8
Fig. 3 – INTERLOCK electrical scheme	11

List of Tables

Table 1 – Channel characteristics of the Mod. A7236 / AG7236 HV Board	5
---	---

1. Overview

Functional description

The Mod. A7236 is a family of HV boards, available with either positive or negative polarity, compatible with the CAEN Universal Multichannel Power Supply System (SY1527, SY2527, SY4527, SY5527).

The A7236 channels share a common floating return, which allows on-detector grounding reducing the noise level; the floating return is insulated from the crate earth up to ± 25 V (with a 65 V hardware limit).

The AG7236 are the “common ground” versions of the boards: the return of the HV channels is wired to the crate Earth reference.

The modules feature also the safety board interlock: this protection allows to disable the primary HV generation when the HV outputs are not connected to their loads. Output range is 0 \div 3.5 kV, with dual range 1.5 mA / 150 μ A maximum output current (5mV set and monitor resolution, Iset res.: 10 nA; Imon res.: 5 nA / 500 pA; 4W maximum channel power).

The boards are provided with both current and voltage protections. If overcurrent occurs, the relevant channel can be programmed either to turn off after a programmable trip time or to keep on providing the maximum allowed current: this feature allows the modules to work as current generator.

The maximum output voltage can be fixed, through a potentiometer located on the front panel, at the same common value for all the board channels and this value can be read out via software. The HV RAMP-UP and RAMP-DOWN rates may be selected independently for each channel in the 1 \div 500 V/s range (1 V/s step).

The 12 and 24 channel versions output voltages are provided via SHV connectors; 32 channel versions feature Radiall 52-pin connectors. 24 channel SHV versions are double width boards (10 TE); other versions are single width (5 TE). “Multipin” versions have also the safety board interlock: this protection allows to disable the primary HV generation when the HV outputs are not connected to their loads.

The full list of the available boards is the following:

Version	No. of channels	Connector	Width	Channel return
A7236	32	Multipin	5TE	Common Floating
AG7236	32	Multipin	5TE	Earth
A7236D	12	SHV	5TE	Common Floating
AG7236D	12	SHV	5TE	Earth
A7236S	24	SHV	10TE	Common Floating
AG7236S	24	SHV	10TE	Earth

Channel Characteristic Table

Table 1 – Channel characteristics of the Mod. A7236 / AG7236 HV Board¹

Output Voltage	0÷3.5 kV	
Polarity	Positive / Negative depending on purchased version	
Max. Output Current	dual range ² : high power: 1.5 mA high resolution: 150µA	
Voltage Set/Monitor Resolution	5 mV	
Current Set Resolution	10 nA	
Current Monitor Resolution	high power: 5nA high resolution: 500pA	
VMAX hardware	0÷3.5 kV common for all the board channels	
VMAX hardware accuracy	± 1% of FSR	
VMAX software	0÷3.5 kV settable for each channel	
VMAX software resolution	1 V	
IMAX hardware	0÷1.5 mA common for all the board channels	
IMAX hardware accuracy	± 1% of FSR	
Ramp Up/Down	1÷500 Volt/sec, 1 Volt/sec step settable for each channel	
Voltage Ripple	10 ÷ 1000 Hz: <12mVpp (typ); <15mVpp (max) 1 ÷ 20000 kHz: <6mVpp (typ); <10mVpp (max)	
Voltage Monitor vs. Output Voltage Accuracy	typical: ± 0.3% ± 0.2 V max: ± 0.3% ± 1 V	
Voltage Set vs. Output Voltage Accuracy	typical: ± 0.3% ± 0.2 V max: ± 0.3% ± 1 V	
Current Monitor vs. Output Current Accuracy	high power	typical: ± 1% ± 200 nA max: ± 1% ± 2 µA
	high resolution	typical: ± 1% ± 100 nA max: ± 1% ± 1 µA
Current Set vs. Output Current Accuracy	high power	typical: ± 1% ± 200 nA max: ± 1% ± 2 µA
	high resolution	typical: ± 1% ± 100 nA max: ± 1% ± 1 µA
Maximum output power	4 W per channel (software safety limit)	
Consumption @ full power	32 channels (A7236): 185 W 24 channels (A7236S): 145 W 12 channels (A7236D): 80 W	

¹ Accuracy values are measured from 10% to 90% of Full Scale Range

² Set via channel parameter IRANGE; see p. 10

Front Panel



Fig. 1 – A7236 front panel (32, 12, 24 channels)

Component Specifications

Packaging

12, 32 channels boards are single width (5 TE), 24 channels boards are double width (10TE). Height is 6U.

Displays

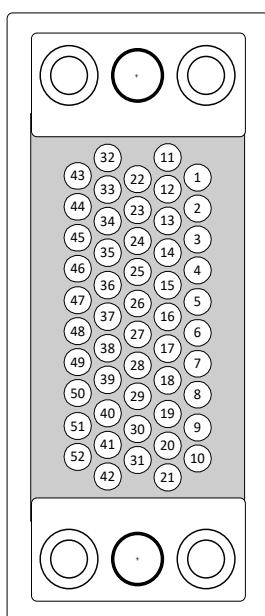
HV ON LED	lights up as at least one channel is on; red: positive polarity; yellow: negative polarity.
POWER GOOD	Board correctly powered
WARNING	Warning status detected (over current, over/under voltage, trip, external disable)
INTERLOCK LED	Red LED. Lights up as the board is in INTERLOCK (channels are disabled).

Trimmers

VMAX: it allows to adjust the hardware maximum voltage VMAX common to all the channels. Its value can be read out via software.

IMAX: it allows to adjust the hardware maximum current IMAX common to all the channels. Its value can be read out via software.

External connections


The specifications of the external connectors are listed in the following subsections.

WARNING! HV output connectors produce extremely hazardous high voltages at a potentially lethal current level; never connect or disconnect the HV OUT connector with the SYx527 power ON/OFF switch ON; always switch SYx527 power OFF and wait at least 30s before connecting or disconnecting HV cables.

Series:	A/AG-7236	A/AG-7236D-7236S
Output Channels:	Multipin connector Radial 691803004 type, 52 pin male (to be mated with Radial 691802002 [SCeM 09.41.34.700.2] type ³); see Table below	HV coaxial connectors Radial SHVR317580
INTERLOCK (see p. 11):	AMP 280371-2	AMP 280371-2

Multipin connector pin assignment

1	N.C.	11	Return	22	N.C.	32	Return	43	N.C.
2	N.C.	12	N.C.	23	N.C.	33	N.C.	44	N.C.
3	HVOUT23	13	N.C.	24	HVOUT12	34	HVOUT6	45	HVOUT0
4	HVOUT24	14	HVOUT18	25	HVOUT13	35	HVOUT7	46	HVOUT1
5	HVOUT25	15	HVOUT19	26	HVOUT14	36	HVOUT8	47	HVOUT2
6	HVOUT26	16	HVOUT20	27	HVOUT15	37	HVOUT9	48	HVOUT3
7	HVOUT27	17	HVOUT21	28	HVOUT16	38	HVOUT10	49	HVOUT4
8	HVOUT28	18	HVOUT22	29	HVOUT17	39	HVOUT11	50	HVOUT5
9	INT_A	19	HVOUT29	30	HVOUT31	40	N.C.	51	N.C.
10	INT_B	20	HVOUT30	31	Shield	41	N.C.	52	Shield
		21	Return			42	Return		

³ Requires 52 pins Radial 691804300 [SCeM 09.41.33.830.7] type, to be inserted using the insertion/extraction tool Radial 282549024 [SCeM 34.95.17.125.3] type.

Ground Configuration Switches

The Ground Configuration Switches (SW1 and SW2) allows to optimize the connection of the connector shield, of the channel return (HVGND) and of AGND (Earth of detector) on the A7236 boards. The switches can be accessed from the boards' bottom.

Board	A7236			A7236S			A7236D		
Switch	Left	Middle	Right	Left	Middle	Right	Left	Middle	Right
SW1	HVGND - EARTH	HVGND floating	HVGND - DGND	HVGND - EARTH	HVGND floating	HVGND - DGND*	HVGND - EARTH	HVGND floating	HVGND - DGND
SW2	SHIELD - EARTH	SHIELD floating	SHIELD - HVGND	Not available					

DGND is the ground reference of the Crate, which is in its turn connected to Earth, but through a different path.

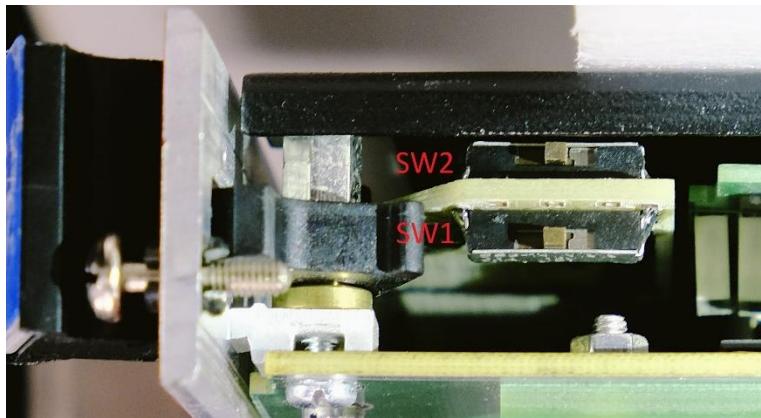


Fig. 2 – SW1 and SW2 switches on the A7236 board

2. Safety and installation requirements

General safety information

This section contains the fundamental safety rules for the installation and operation of the board. Read thoroughly this section before starting any procedure of installation or operation of the product.

Injury Precautions

Review the following precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use the product only as specified. Only qualified personnel should perform service procedures.

Avoid Electric Overload.

To avoid electric shock or fire hazard, do not power a load outside of its specified range.

Avoid Electric Shock.

To avoid injury or loss of life, do not connect or disconnect cables while they are connected to a voltage source.

Do Not Operate Without Covers.

To avoid electric shock or fire hazard, do not operate this product with covers or panels removed.

Do Not Operate in Wet/Damp Conditions.

To avoid electric shock, do not operate this product in wet or damp conditions.

Do Not Operate in an Explosive Atmosphere.

To avoid injury or fire hazard, do not operate this product in an explosive atmosphere.

Do Not Operate with Suspected Failures.

If you suspect this product to be damaged, have it inspected by qualified service personnel.

Safety Terms and Symbols on the Product

These terms may appear on the product:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

The following symbols may appear on the product:

DANGER
High Voltage

WARNING
Refer to Manual

Installation

The Mod. A7236 – AG7236 are SYx527 boards. At power ON the SYSTEM, the processor will scan all the slots in the crate to find out where the module is plugged and what kind of module it is.

3. Operating modes

The Mod. A7236 – AG7236 boards can be controlled, either locally or remotely, through the SYSTEM software interface. For details on SYSTEM operation, please refer to the User's Manual of this product. The following sections contain a description of commands available for the board control and status monitoring.

Output control and monitoring

For each output channel, it is possible, through the system, to access the following parameters:

<i>CHANNEL NAME (settable):</i>	descriptive name for the relevant channel
<i>VOSET (settable):</i>	the first of the two allowed voltage programmable values.
<i>IOSET (settable):</i>	the first of the two allowed current limit programmable values (OVC warning only)
<i>V1SET (settable):</i>	the second of the two allowed voltage programmable values
<i>I1SET (settable):</i>	the second of the two allowed current limit programmable values (OVC warning only)
<i>RUp (settable):</i>	the Ramp-Up parameter value, i.e. the maximum voltage programmable increase rate.
<i>RDWn (settable):</i>	the Ramp-Down parameter value, i.e. the maximum voltage programmable decrease rate.
<i>TRIP (settable):</i>	the TRIP parameter value, i.e. the maximum time an Over Current condition is allowed to last.
<i>SVMAX (settable):</i>	the maximum voltage value programmable for the channel. If the value set as SVMAX is less than the current value of the VOSET/ V1SET parameter, the latter will automatically decrease to the SVMAX value.
<i>VMON (monitor):</i>	monitored voltage value
<i>IMON (monitor):</i>	monitored current value
<i>IRANGE (settable):</i>	Sets current range (high or low)
<i>ZCDetect (settable)</i>	On/Off: If ON, it stores the present IMon value (IMonZero) into memory for "zero current compensation" purposes (see description below); if OFF, the unit is ready to store IMon as IMonZero. After IMonZero is stored, the parameter returns to OFF
<i>ZCAdjust (settable)</i>	En/Dis: If Enabled, the stored IMonZero value via ZCDetect option is subtracted from the measured, "non compensated" IMON value. The returned "compensated" IMON value will be then the difference between measured and stored values. If Disabled, the returned IMON value is not compensated
<i>STATUS (monitor):</i>	it displays the channel status.
<i>PW (ON/OFF):</i>	the Power parameter shows the ON/OFF channel status. As this parameter is set ON, the channel is switched on (if the INTERLOCK is not active and if the channel is enabled either locally or remotely) highlighted in green when channel ON; onstate = ON; offstate = OFF
<i>POn (EN/DIS):</i>	Power-On option, which can be enabled or disabled. If this option is enabled, at Power-On or after a Restart each channel is restored in the same condition (defined by the Power parameter) it was before the Power-Off or Reset. If this option is disabled, at Power-On or after a Restart all the channels are off, independently from the condition in which they were before the Power-Off or Reset ; onstate = Enabled; offstate = Disabled
<i>PDwn (Kill/Ramp):</i>	Power-Down option, which can be set as KILL or RAMP. It affects the way the channels react at a Power-Off command caused by a TRIP condition. If the KILL option is selected, the relevant channel will be switched off at the maximum rate available. If the RAMP option is selected, the voltage will drop to zero at a rate determined by the value of the Ramp-Down parameter programmed for that channel; onstate = Ramp; offstate = Kill
<i>TripInt:</i>	2N-bit word (hexadecimal) maximum 16 lines, where N is the number of the board's Internal Trip Bus lines. Bits [0;N-1] allow the channel to sense the trip status from the corresponding lines when set to one; in the same way, bits [N;2N-1] allow the channel to propagate the trip status over the Trip Bus: bit N on line 0 and so on (see SY4527 User's manual).
<i>TripExt:</i>	Must be set in the 0÷255 range (hexadecimal). Bits [0;3] allow the channel to sense the trip status from the corresponding lines when set to one; in the same way, bits [4;7] allow the channel to propagate the trip status over the trip bus: bit 4 on line 0 and so on (see SY4527 User's manual).

If the POWER ON option is enabled, as the module is turned ON, the channel is restored to the same condition it was before the POWER OFF or RESET; if this option is disabled, at POWER ON or after a RESET, the channel is kept OFF independently from its previous condition.

Channel STATUS Flag

The SYSTEM may return the following messages when monitoring the channel STATUS:

RUP	channel ramping up
RDWN	channel ramping down
OVC	channel in OVERCURRENT condition
OVV	channel in OVERVOLTAGE condition
UNV	channel in UNDERVOLTAGE condition
VMAX	channel reached VMAX condition
E-TRIPPED	channel OFF due to external TRIP line signal ⁴
I-TRIPPED	channel OFF due to internal OVERCURRENT condition
EXT_DIS	channel disabled by board INTERLOCK protection
PWR_FAIL	channel OFF due to exceeded power limit (>4W)

After a E-TRIPPED, I-TRIPPED, EXT_DIS and PWR_FAIL notification, it is necessary to perform a CLEAR ALARM cycle, before turning the channel ON.

Moreover, it is possible to monitor board parameters, such as measured Temperature, IMax and HVMax, and to check board status; the POWER SUPPLY SYSTEM may return the following messages when monitoring the board status:

UNDER_TEMP board temperature < 5°C
 OVER_TEMP board temperature > 65°C

Interlock protection

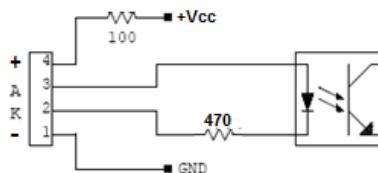


Fig. 3 – INTERLOCK electrical scheme


To enable the HV output channels, first it is necessary that pin 9 and 10 on the Radiall 52pin output connector are short circuited (skip this step on boards with SHV output connectors). Then it is necessary to configure the Interlock connector as follows:

contact open	INTERLOCK
voltage level (0÷1V, ~5mA current) between pin 2 and pin 3	INTERLOCK
short circuit pin 1 with pin 2, and pin 3 with pin 4	ENABLED
voltage level (4÷6V, ~5mA current) between pin 2 and pin 3	ENABLED

A schematic diagram of the Interlock input is shown in the figure above, where the diode is part of opto-coupler stage. *Interlock* means that channel is hardware disabled.

The front panel Interlock LED is ON when the INTERLOCK is active; as INTERLOCK is active, channels are turned off at the fastest available rate, regardless the RAMP DOWN setting.

⁴ EXTTRIP and INTTRIP parameters are expressed in Hexadecimal format

CAEN S.p.A.

Via Vetraia 11
55049 - Viareggio
Italy
Phone +39 0584 388 398
Fax +39 0584 388 959
info@caen.it
www.caen.it

CAEN GmbH

Brunnenweg 9
64331 Weiterstadt
Germany
Tel. +49 (0)212 254 4077
Mobile +49 (0)151 16 548 484
info@caen-de.com
www.caen-de.com

CAEN Technologies, Inc.

1 Edgewater Street - Suite 101
Staten Island, NY 10305
USA
Phone: +1 (718) 981-0401
Fax: +1 (718) 556-9185
info@caentechnologies.com
www.caentechnologies.com

CAENspa INDIA Private Limited

B205, BLDG42, B Wing,
Azad Nagar Sangam CHS,
Mhada Layout, Azad Nagar, Andheri (W)
Mumbai, Mumbai City,
Maharashtra, India, 400053
info@caen-india.in
www.caen-india.in

Copyright © CAEN SpA. All rights reserved. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.