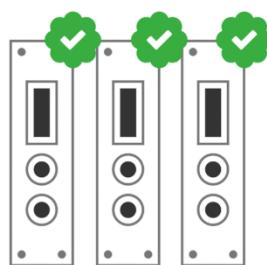


Register your device


Register your device to your **MyCAEN+** account and get access to our customer services, such as notification for new firmware or software upgrade, tracking service procedures or open a ticket for assistance. **MyCAEN+** accounts have a dedicated support service for their registered products. A set of basic information can be shared with the operator, speeding up the troubleshooting process and improving the efficiency of the support interactions.

MyCAEN+ dashboard is designed to offer you a direct access to all our after sales services. Registration is totally free, to create an account go to <https://www.caen.it/become-mycaenplus-user> and fill the registration form with your data.

1

create a MyCAEN+ account

2

register your devices

3

get support and more!

<https://www.caen.it/become-mycaenplus-user/>

Purpose of this Manual

This document is the A1560H A1580H 8/16 Channel 6-8 kV/20 μ A Common Floating Return Boards user manual; it contains information about the installation, the configuration and the use of the board.

Change Document Record

Date	Revision	Changes
30 January 2015	0	PRELIMINARY Release
6 October 2017	1	Updated Technical Specifications, Operating modes
6 February 2018	2	Updated Technical Specifications
10 July 2019	3	Updated Output control and monitoring
10 February 2021	4	Updated Technical Specifications

Symbols, abbreviated terms and notation

N.A.

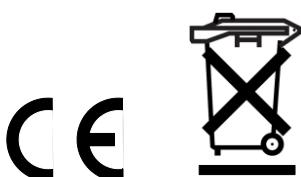
Reference Documents

SY4527 User's Manual

SY4527 Quickstart Guide

Precautions for Handling, Storage and Installation of CAEN products

Disclaimer


No part of this manual may be reproduced in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of CAEN SpA.

CAEN will repair or replace any product within the guarantee period if the Guarantor declares that the product is defective due to workmanship or materials and has not been caused by mishandling, negligence on behalf of the User, accident or any abnormal conditions or operations.

CAEN declines all responsibility for damages or injuries caused by an improper use of the Modules due to negligence on behalf of the User. It is strongly recommended to read thoroughly the CAEN User's Manual before any kind of operation. *CAEN reserves the right to change partially or entirely the contents of this Manual at any time and without giving any notice.*

Disposal of the Product *The product must never be dumped in the Municipal Waste. Please check your local regulations for disposal of electronics products.*

Made In Italy : We stress the fact that all the boards are made in Italy because in this globalized world, where getting the lowest possible price for products sometimes translates into poor pay and working conditions for the people who make them, at least you know that who made your board was reasonably paid and worked in a safe environment. (this obviously applies only to the boards marked "Made in Italy", we cannot attest to the manufacturing process of "third party" boards).

Index

1. Overview	4
Functional description	4
2. Technical Specifications	5
Channel Characteristic Table	5
Front Panel	6
Packaging	7
External connections	7
Multipin connector pin assignment	7
Displays	8
Jumpers and trimmers	8
3. Safety and installation requirements	9
General safety information.....	9
Injury Precautions	9
Safety Terms and Symbols on the Product	9
Installation	9
4. Operating modes	10
Output control and monitoring	10
Output Enable.....	11
HV Enable	12
<i>HV Enable examples</i>	12
Interlock	15
Grounding specifications	15
Safety Earth connection	15

List of Figures

Fig. 1 – A1560H / A1580H family 16 and 8 channel boards.....	4
Fig. 2 – 16 and 8 channel version front panel.....	6
Fig. 3 – Radiall 52 pin connector.....	7
Fig. 4 – Channel HV Enable	12
Fig. 5 – Interlock section	15
Fig. 6 – Earth configuration connection examples.....	16

List of Tables

Table 1 – Channel characteristics of the Mod. A1560H / A1580H HV Board.....	5
Table 2 – 52 pin connector assignment.....	7
Table 3 – Setting components	8

1. Overview

Functional description

Fig. 1 – A1560H / A1580H family 16 and 8 channel boards

The Mod. A1560H/A1580H and AG560H/AG580H is a family of HV boards, available with either positive or negative polarity, compatible with the CAEN Universal Multichannel Power Supply System (SY1527, SY2527, SY3527, SY4527, SY5527). 8 and 16 channel versions are available; all models feature individual channel enable.

The A1560H/A1580H channels share a common floating return, which allows on-detector grounding reducing the noise level; the floating return is insulated from the crate earth up to ± 50 V (with a 65 V hardware limit); the return of the AG560H/AG580H channels is wired to the crate Earth reference.

The output voltage range is 0 \div 6 kV, with 20 μ A maximum output current for the x560H boards and 0 \div 8 kV, with 20 μ A for the x580H's.

The boards are provided with both current and voltage protections. If overcurrent occurs, the relevant channel can be programmed either to turn off after a programmable trip time or to keep on providing the maximum allowed current: this feature allows the modules to work as current generator.

Safety features include the hardware “Interlock”, that can be configured in several ways.

The maximum output voltage can be fixed, through a potentiometer located on the front panel, at the same common value for all the board channels and this value can be read out via software.

The HV RAMP-UP and RAMP-DOWN rates may be selected independently for each channel in the 1 \div 500 V/s range (1 V/s step).

The 8 channel versions are provided with SHV output connectors; 16 channel versions are available with Radiall 52-pin connector. All versions are available with either positive, negative or “mixed” (half of the channels positive and half negative) polarity.

2. Technical Specifications

Channel Characteristic Table

Table 1 – Channel characteristics of the Mod. A1560H / A1580H HV Board

Version	A1560H; AG560H		A1580H; AG580H		
Polarity	Positive, Negative or Mixed depending on purchased version				
Output Voltage	0÷6 kV		0÷8 kV		
Max. Output Current	20 μ A				
Voltage Set Resolution	100 mV		200 mV		
Voltage Monitor Resolution	10 mV				
Current Set Resolution	500 pA				
Current Monitor Resolution	50 pA				
VMAX hardware	0÷6 kV common to all board channels	0÷8 kV common to all board channels			
VMAX hardware accuracy	\pm 2% of FSR				
VMAX software	0÷6 kV settable for each channel	0÷8 kV settable for each channel			
VMAX software resolution	1 V				
Ramp Up/Down	1÷500 Volt/sec, 1 Volt/sec step				
Voltage Ripple	20 ÷ 1000 Hz Typ	<5mVpp			
	Max	<10mVpp			
	1 ÷ 20000 kHz Typ	<3mVpp			
	Max	<5mVpp			
VMon vs. VOut Accuracy ^{1,2}	\pm 0.02% \pm 1.2 V		\pm 0.3% \pm 0.5 V		
VSet vs. VOut Accuracy ²	\pm 0.02% \pm 1.2 V		\pm 0.3% \pm 2 V		
IMon vs. IOut Accuracy ²	\pm 0.2% \pm 40 nA		\pm 2% \pm 1nA		
ISet vs. IOut Accuracy ²	\pm 0.2% \pm 40 nA		\pm 2% \pm 10nA		

¹ From 1% to 100% of Full Scale Range (A1560H; AG560H), From 10% to 90% of Full Scale Range (A1580H; AG580H)

² During operation in Overcurrent or when VMAX Hardware is reached (and/or exceeded), VMON values have to be assumed as "indication"; possible monitor drifts are caused by the different regulation mode.

Front Panel

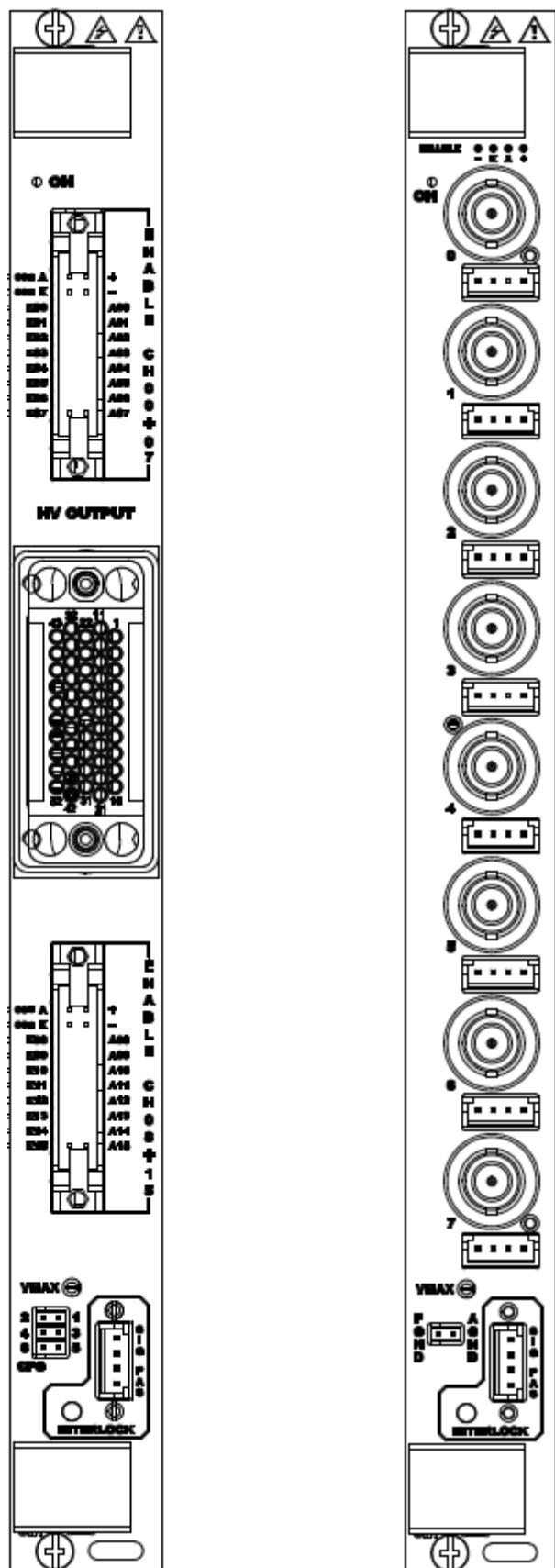


Fig. 2 – 16 and 8 channel version front panel

Packaging

All versions are single width boards (5 TE); height is 6 U.

External connections

WARNING! HV output connectors produce extremely hazardous voltages at a potentially lethal current level; never connect or disconnect the HV OUT connector with the SYx527 power ON/OFF switch ON; always switch SYx527 power OFF and wait at least 30s before connecting or disconnecting HV cables.

The function and electro-mechanical specifications of the external connectors are listed in the following subsections.

Version:	A1560H, A1580H, AG560H, AG580H	A1560HD, A1580HD, AG560HD, AG580HD
Output Channels:	Multipin connector Radiall 691803004 type, 52 pin male (to be mated with Radiall 691802002 [SCEM 09.41.34.700.2] type ³); see Table below	SHV RADIALL R317580; Impedance: 50 Ohm Frequency range: 0 – 2 GHz VSWR: <1.20 + 0.3 F (GHz) – (plug and jack) Test voltage: 10kV DC – 1mn (unmated connectors); 12kV DC – 1mn (mated pairs) Current rating: 10 A
Enable	3M 3428-5202	AMP 280371-2
Return:	On Multipin connector Radiall 691803004 type	AMP 280371-2
AGND:	On Multipin connector Radiall 691803004 type	AMP 280371-2
INTERLOCK:	AMP 280371-2	AMP 280371-2

Multipin connector pin assignment

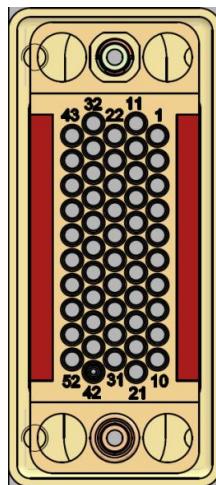
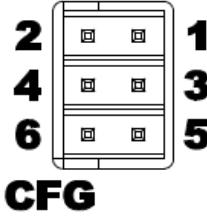


Fig. 3 – Radiall 52 pin connector

Table 2 – 52 pin connector assignment

1	N.C.	11	Return	22	N.C.	32	Return	43	N.C.
2	N.C.	12	N.C.	23	N.C.	33	N.C.	44	N.C.
3	N.C.	13	N.C.	24	HVOUT12	34	HVOUT6	45	HVOUT0
4	N.C.	14	N.C.	25	HVOUT13	35	HVOUT7	46	HVOUT1
5	N.C.	15	N.C.	26	HVOUT14	36	HVOUT8	47	HVOUT2
6	N.C.	16	N.C.	27	HVOUT15	37	HVOUT9	48	HVOUT3
7	N.C.	17	N.C.	28	N.C.	38	HVOUT10	49	HVOUT4
8	N.C.	18	N.C.	29	N.C.	39	HVOUT11	50	HVOUT5
9	INT_A	19	N.C.	30	N.C.	40	N.C.	51	N.C.
10	INT_B	20	N.C.	31	SHIELD	41	N.C.	52	SHIELD
		21	Return			42	Return		


³ Requires 52 pins Radiall 691804300 [SCEM 09.41.33.830.7] type, to be inserted using the insertion/extraction tool Radiall 282549024 [SCEM 34.95.17.125.3] type.

Displays

- HV ON LED:** *Function:* lights up as at least one channel is on
Type: red LEDs for positive polarity version; yellow green LEDs for negative polarity version.
- INTERLOCK LED:** *Function:* lights up as the board is in INTERLOCK (channels are disabled).
Type: red LED

Jumpers and trimmers

Table 3 – Setting components

	VMAX trimmer:	Function: it allows to adjust the hardware maximum voltage VMAX common to all the channels. Its value can be read out via software.
	AGND - Shield configuration jumper (SHV versions; not available on AG5xx's):	Function: Connects AGND (Earth) to connector shield (HV Channels Return)
	Shield configuration jumpers (Radiall 52pin versions; not available on AG5xx's):	Function: see below
		1-2 AGND - shield Connects Agnd (Earth) to HV cable shield
		3-4 AGND - Return Connects Agnd (Earth) to HV channels return
		5-6 Shield - Return Connects Shield to HV channels return

3. Safety and installation requirements

General safety information

N.B. read carefully the “Precautions for Handling, Storage and Installation” document provided with the product before starting any operation!

This section contains the fundamental safety rules for the installation and operation of the board. Read thoroughly this section before starting any procedure of installation or operation of the product.

Injury Precautions

Review the following precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use the product only as specified. Only qualified personnel should perform service procedures.

Avoid Electric Overload.

To avoid electric shock or fire hazard, do not power a load outside of its specified range.

Avoid Electric Shock.

To avoid injury or loss of life, do not connect or disconnect cables while they are connected to a voltage source.

Do Not Operate Without Covers.

To avoid electric shock or fire hazard, do not operate this product with covers or panels removed.

Do Not Operate in Wet/Damp Conditions.

To avoid electric shock, do not operate this product in wet or damp conditions.

Do Not Operate in an Explosive Atmosphere.

To avoid injury or fire hazard, do not operate this product in an explosive atmosphere.

Do Not Operate With Suspected Failures.

If you suspect this product to be damaged, have it inspected by qualified service personnel.

Safety Terms and Symbols on the Product

These terms may appear on the product:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

The following symbols may appear on the product:

DANGER

High Voltage

WARNING

Refer to Manual

Installation

The Mod. Mod. A1560H/A1580H and AG560H/AG580H are SYx527 boards. Installation must be performed according to instructions reported in the SYx527 manual. At power ON the SYx527, the processor will scan all the slots in the crate to find out where the module is plugged and what kind of module it is.

N.B.: the ventilation fan speed must be set to MEDIUM at least

4. Operating modes

The Mod. A1560H/A1580H and AG560H/AG580H boards can be controlled, either locally or remotely, through the SYx527 software interface. For details on SYx527 operation, please refer to the User's Manual of this product. The following sections contain a description of commands available for the board control and status monitoring.

Output control and monitoring

For each output channel, it is possible, through the system, to access the following parameters:

<i>CHANNEL NAME (settable)</i>	descriptive name for the relevant channel
<i>VOSET (settable)</i>	the first of the two allowed voltage programmable values.
<i>IOSET (settable)</i>	the first of the two allowed current limit programmable values
<i>V1SET (settable)</i>	the second of the two allowed voltage programmable values
<i>I1SET (settable)</i>	the second of the two allowed current limit programmable values
<i>RUp (settable)</i>	the Ramp-Up parameter value, i.e. the maximum voltage programmable increase rate.
<i>RDWn (settable)</i>	the Ramp-Down parameter value, i.e. the maximum voltage programmable decrease rate.
<i>TRIP (settable)</i>	the TRIP parameter value, i.e. the maximum time an Over Current condition is allowed to last.
<i>SVMAX (settable)</i>	the maximum voltage value programmable for the channel. If the value set as SVMAX is less than the current value of the VOSET/ V1SET parameter, the latter will automatically decrease to the SVMAX value.
<i>VMON (monitor)</i>	monitored voltage value
<i>IMON (monitor)</i>	monitored current value
<i>ZCDetect (settable)</i>	(ON/OFF) If ON, it stores the present IMON value into memory for "zero current compensation" purposes, see <i>ZCAdjust</i> parameter (this parameter is available only for some versions, please contact CAEN)
<i>ZCAdjust (settable)</i>	(EN/DIS) If enabled, the stored IMON value via <i>ZCDetect</i> option is subtracted from the measured, "non compensated" IMON value. The returned "compensated" IMON value will be then the difference between measured and stored values; if disabled, the returned IMON value is not compensated (this parameter is available only for some versions, please contact CAEN)
<i>STATUS (monitor)</i>	it displays the channel status.
<i>PW (ON/OFF)</i>	the Power parameter shows the ON/OFF channel status. As this parameter is set ON, the channel is switched on (if the INTERLOCK is not active and if the channel is enabled either locally or remotely) highlighted in green when channel ON; onstate = ON; offstate = OFF
<i>POn (EN/DIS)</i>	Power-On option, which can be enabled or disabled. If this option is enabled, at Power-On or after a Restart each channel is restored in the same condition (defined by the Power parameter) it was before the Power-Off or Reset. If this option is disabled, at Power-On or after a Restart all the channels are off, independently from the condition in which they were before the Power-Off or Reset ; onstate = Enabled; offstate = Disabled
<i>PDwn (Kill/Ramp)</i>	Power-Down option, which can be set as KILL or RAMP. It affects the way the channels react at a Power-Off command caused by a TRIP condition. If the KILL option is selected, the relevant channel will be switched off at the maximum rate available. If the RAMP option is selected, the voltage will drop to zero at a rate determined by the value of the Ramp-Down parameter programmed for that channel; onstate = Ramp; offstate = Kill
<i>TripInt (settable)</i>	2N-bit word (hexadecimal) maximum 16 lines, where N is the number of the board's Internal Trip Bus lines. Bits [0;N-1] allow the channel to sense the trip status from the corresponding lines when set to one; in the same way, bits [N;2N-1] allow the channel to propagate the trip status over the Trip Bus: bit N on line 0 and so on (see SY4527 User's manual).
<i>TripExt (settable)</i>	Must be set in the 0÷255 range (hexadecimal). Bits [0;3] allow the channel to sense the trip status from the corresponding lines when set to one; in the same way, bits [4;7] allow the channel to propagate the trip status over the trip bus: bit 4 on line 0 and so on (see SY4527 User's manual).
<i>EnCtr (settable; see p.12)</i>	Drive: channel enabled as the photodiode of ENABLE circuit is driven Undrive: channel enabled as the photodiode of ENABLE circuit is not driven

If the POWER ON option is enabled, as the module is turned ON, the channel is restored to the same condition it was before the POWER OFF or RESET; if this option is disabled, at POWER ON or after a RESET, the channel is kept OFF independently from its previous condition.

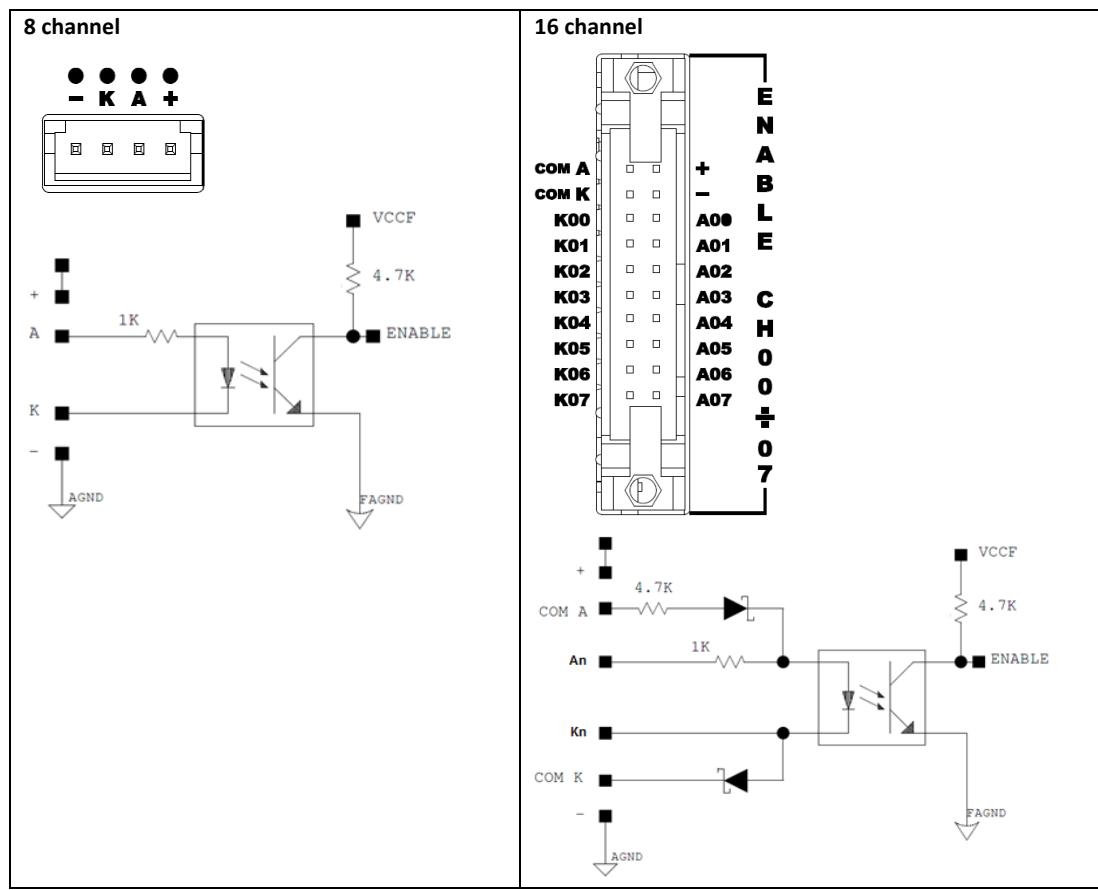
The following messages may be returned by the SYSTEM when monitoring the channel status:

OFF	(channel turned OFF)
RUP	(channel ramping up)
RDWN	(channel ramping down)
OVC	(channel in OVERCURRENT condition)
OVV	(channel in OVERVOLTAGE condition)
UNV	(channel in UNDERVOLTAGE condition) ⁴
E-TRIPPED	(channel OFF due to external TRIP line signal) ⁵
I-TRIPPED	(channel OFF due to internal OVERCURRENT condition)
EXT_DIS	(channel disabled by board INTERLOCK protection)

Moreover it is possible to monitor board parameters, such as measured Temperature and HVMax, and to check board status; the following messages may be returned by the POWER SUPPLY SYSTEM when monitoring the board status:

UNDER_TEMP	(board temperature < 5°C)
OVER_TEMP	(board temperature > 65°C)

Output Enable


The A1560H – A1580H output enable takes place at two stages: HV Enable and Interlock. The channels provide output as both stages are enabled.

⁴ UNV is also reported when HVMax limit is reached, it is up to the User to verify that VMON value does not exceed HVMax.

⁵ EXTTRIP and INTTRIP parameters are expressed in Hexadecimal format

HV Enable

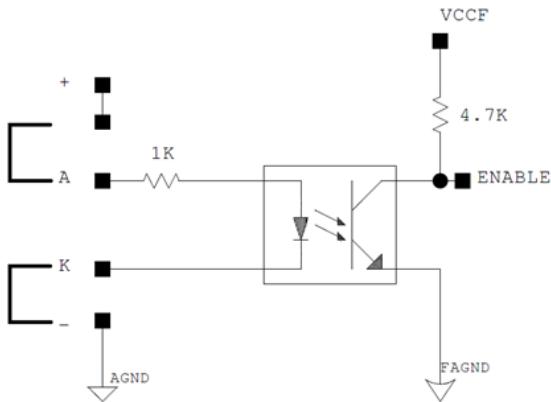
Fig. 4 – Channel HV Enable

The diagram above shows the HV enable stage in the 8 and in the 16 channel versions respectively. In the 8 channel (SHV) version, the contact are as follows:

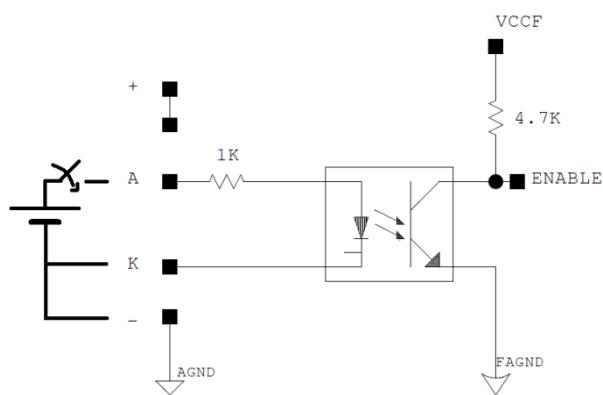
- "+" Is the dedicated power supply (10V / 100mA)
- "-" Is the power supply ground reference
- "A" is the anode of the photo diode
- "K" is the cathode of the photo diode

The 16 channel version has a different enable stage, where:
"COM A" is the common reference of all anodes in a group (CH00 to CH07 and CH08 to CH15)
"COM K" is the common reference of all the cathodes in a group (CH00 to CH07 and CH08 to CH15)

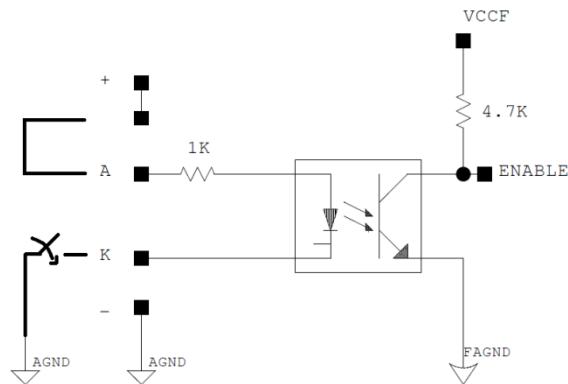
that is, it is not possible self biasing individually each input exploiting the local power supply, but this can be done for the 2 groups of 8 channels from CH00 to CH07 and CH08 to CH15.

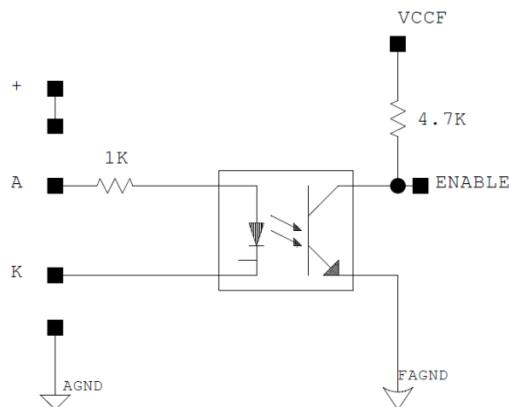

The enable depends on the setting of the EnCtr parameter (see p.10); if EnCtr is set to:

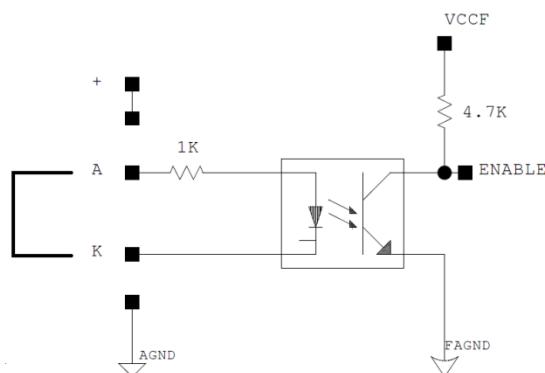
- Drive: channel is enabled as the photodiode of ENABLE circuit is driven
- Undrive: channel is enabled as the photodiode of ENABLE circuit is not driven


HV Enable examples

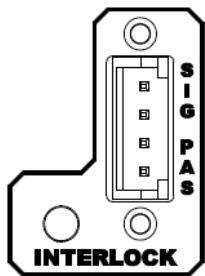
This section describes some examples to configure the HV Enable circuit to allow the channels to provide high voltage output:


1. Set EnCtr parameter to drive and connect the contacts as follows (local enable):


2. Set EnCtr parameter to drive and provide an external TTL, with one of the following connections (remote enable):


3. Set EnCtr parameter to drive and provide an external shortage (remote enable):

4. Set EnCtr parameter to undrive and leave contacts open (local enable):



5. Set EnCtr parameter to undrive and connect A with K (local enable):

Interlock

In order to enable the HV output channels, first of all it is necessary that pin 9 and 10 on the Radiall 52pin output connector are short circuited (see p.7); if the board features SHV connectors, skip this step. Then the enable procedure is completed in this way:

Fig. 5 – Interlock section

- Short circuit pin 3 and 4 [lower ones]. Leave contact open between pin 1 (+) and 2 (-) [upper ones]
- Apply +5 V (3-4mA) differential signal between pin 1 (+) and 2 (-); pin 1 is the upper one. Leave contact open between pin 3 and 4.

The INTERLOCK LED (red) is turned off as one of the actions above is performed.

When the channels are disabled the voltage outputs drop to zero at the maximum rate available; when the output disable cause is removed (see above), the channels remain OFF until the User turns them ON via software.

Grounding specifications

The Mod. A1560H – A1580H channels share a common floating return (FAGND, see p.7), available on the front panel multipin connector, insulated from the crate ground (AGND, see p.7), which is available as front panel reference (see p.7). This feature allows on-detector grounding, thus avoiding loops which may increase noise level. FAGND and AGND may be coupled in several ways, according to environment requirements. Examples refer to 16 channel versions.

Safety Earth connection

The connection of shield and return to Earth is fundamental for User safety.

The connection must always be at the level of detector or power supply system.

Return and Shield connections even if not present or performed incorrectly, due to protection circuits implemented on the board are bound to Earth; in this case the voltage difference between return and Earth (System), shield and Earth is limited to approximately 50V. Please note that this is a status of emergency-protection, not a working one. The Connector Configurator allows to optimize the connection of the shield, of the return and of AGND (Earth). The best configuration must be determined by the user upon application, the optimal connection depends on many characteristics of the related experiment.

The following diagrams show four examples (16 channels versions) of configuration, namely:

1. The “closed loop” Earth configuration
2. The “closed loop” Earth configuration, with protection stage on the load grounding
3. The “semi-open loop” Earth configuration
4. The “open loop” Earth configuration

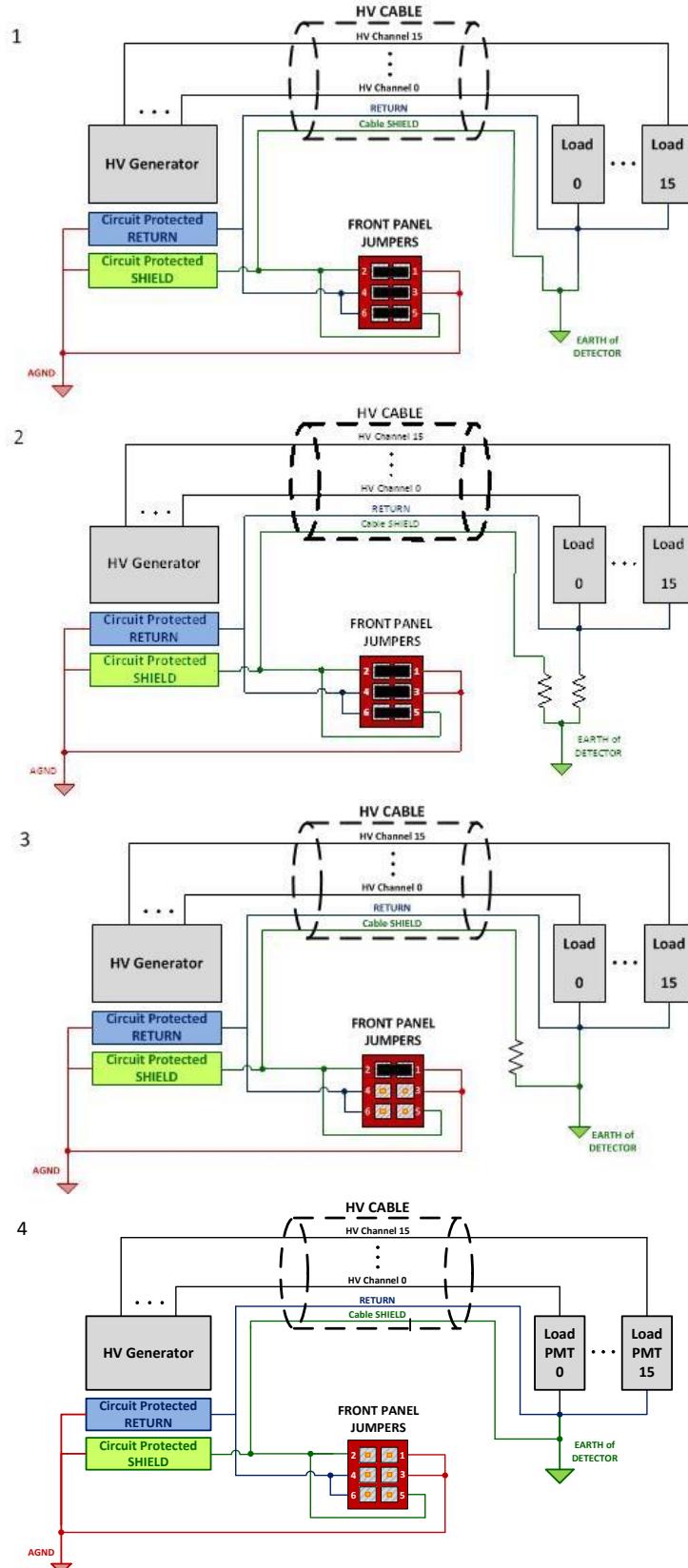


Fig. 6 – Earth configuration connection examples

CAEN S.p.A.

Via Vetraia 11
55049 - Viareggio
Italy
Phone +39 0584 388 398
Fax +39 0584 388 959
info@caen.it
www.caen.it

CAEN GmbH

Brunnenweg 9
64331 Weiterstadt
Germany
Tel. +49 (0)212 254 4077
Mobile +49 (0)151 16 548 484
info@caen-de.com
www.caen-de.com

CAEN Technologies, Inc.

1 Edgewater Street - Suite 101
Staten Island, NY 10305
USA
Phone: +1 (718) 981-0401
Fax: +1 (718) 556-9185
info@caentechnologies.com
www.caentechnologies.com

CAENspa INDIA Private Limited

B205, BLDG42, B Wing,
Azad Nagar Sangam CHS,
Mhada Layout, Azad Nagar, Andheri (W)
Mumbai, Mumbai City,
Maharashtra, India, 400053
info@caen-india.in
www.caen-india.in

Copyright © CAEN SpA. All rights reserved. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.