



- Fast, low noise inverting preamplifier specifically designed for Scintillation Detectors
- Variable sensitivity from 0.8 to 10 mV/pC
- Fast output for timing measurements
- Test input for calibration

The **A1424** is a preamplifier specifically designed for **Scintillation Detectors** widely used in Nuclear and High Energy Physics where low noise, fast response and high counting rates are required.

The **A1424** relies on an inverting Charge Sensitive Preamplifier which integrates both positive and negative input charge pulses coming from the Photodetector (e.g. PMT) coupled to the Scintillator.

It provides a voltage signal in the  $\pm 4$  V range on  $50 \Omega$  termination ( $\pm 8$  V on  $1 \text{ k}\Omega$ ) with exponential decay ( $\tau = 50 \mu\text{s}$ ) as Energy output (ENERGY). The height of the resulting pulse is proportional to the integrated charge. The sensitivity of the Charge Sensitive Preamplifier can be set via a 10 position rotary switch ranging from **0.8** to **10 mV/pC**.

The **A1424** is provided with a non-inverting buffer (gain  $\sim 1$ ) which reproduces the input signals coming from the detector as fast output being useful for timing measurements (FAST). Moreover, a test input accepts positive and negative signals for calibration purposes (TEST).

## Specification

### Input Sensitivities

0.8, 0.9, 1.1, 1.3, 1.5, 1.7, 2.5, 3, 5, 10 mV/pC  
selectable via Rotary Switch.

### Rise Time

ENERGY Out  $< 60 \text{ ns}$   
FAST Out  $< 2.3 \text{ ns}$

### Fall Time

Energy Out  $50 \mu\text{s}$

### Integral Nonlinearity

Energy Out  $< \pm 0.02\%$

### Temperature Coefficient

$\pm 0.01\% /{^\circ}\text{C}$

### Noise (Energy Out)

Max. sensitivity (10 mV/pC)  $< 3.2 \text{ fC}$   
Min. sensitivity (0.8 mV/pC)  $< 8.5 \text{ fC}$

### Counting Rate

Gain shift  $< 0.15\%$  on 130 mV pulses on IN input (sensitivity: 3 mV/pC), adding on TEST input 60 mV @40 kHz random pulses.

## Inputs

### IN

Accepts positive and negative input charge pulses from Scintillation detectors.  
Maximum Input Voltage:  $\pm 4$  V, input impedance:  $50 \Omega$ , LEMO-00 connector.

### TEST

Positive or negative inputs for the energy calibration via  $C_{\text{test}} = 100 \text{ pF}$ ; LEMO-00 connector.

### Power

Input Power through a 2.1 m cable with a D-type 9 pin male connector.

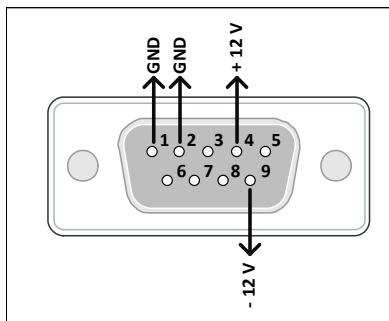



Fig. 2: Power Supply Connector pin out.

## Outputs

### ENERGY

$\pm 8$  V (on  $1 \text{ k}\Omega$ ),  $50 \Omega$  back termination. The output voltage is proportional to the amount of input charge, LEMO-00 connector.

### FAST

Reproduces the input signals (gain  $\sim 1$ ) coming from the detector as fast output for timing measurements.  $50 \Omega$  back termination, LEMO-00 connector.

### Packaging

Shielded Box

Dimensions: 55 mm x 25 mm x 95 mm

Weight: 260 g (with Power Supply cable)

### Power Requirements

+12 V 15 mA  
-12 V 15 mA

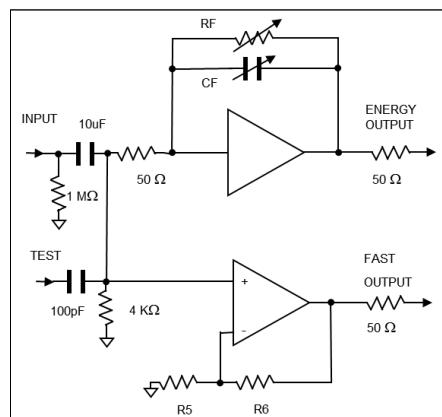



Fig. 1: A1424 block diagram.

## Ordering Option

|               |                                    |
|---------------|------------------------------------|
| Ordering code | Description                        |
| WA1424XAAAAA  | A1424 - Scintillation Preamplifier |



**CAEN S.p.A.**

Via Vetraia 11  
55049 - Viareggio  
Italy  
Phone +39 0584 388 398  
Fax +39 0584 388 959  
info@caen.it  
[www.caen.it](http://www.caen.it)



**CAEN GmbH**

Brunnenweg 9  
64331 Weiterstadt  
Germany  
Tel. +49 (0)212 254 4077  
Mobile +49 (0)151 16 548 484  
info@caen-de.com  
[www.caen-de.com](http://www.caen-de.com)

**CAEN Technologies, Inc.**

1 Edgewater Street - Suite 101  
Staten Island, NY 10305  
USA  
Phone: +1 (718) 981-0401  
Fax: +1 (718) 556-9185  
info@caentechnologies.com  
[www.caentechnologies.com](http://www.caentechnologies.com)

**CAENspa INDIA** Private Limited

B205, BLDG42, B Wing,  
Azad Nagar Sangam CHS,  
Mhada Layout, Azad Nagar, Andheri (W)  
Mumbai, Mumbai City,  
Maharashtra, India, 400053  
info@caen-india.in  
[www.caen-india.in](http://www.caen-india.in)

