

# 725 Digitizer Family

## 16/8 Ch. 14-bit 250 MS/s Digitizer



### Overview

The 725 is a family of CAEN Waveform Digitizers able to perform basic waveform recording and run online advanced algorithms (DPP) for digital pulse processing: charge integration and pulse shape discrimination with constant fraction timing, pulse height analysis, zero-length encoding, and dynamic acquisition window. The wide selection of DPP algorithms supported by this family makes the 725 a “must-have” for any kind of nuclear physics application. Data is read by a Flash ADC, 14-bit resolution and 250 MS/s sampling rate, which is well suited for mid-fast signals as the ones coming from liquid or inorganic scintillators coupled to PMTs or Silicon Photomultipliers, but also for high precision detectors as Silicon or HPGe coupled with charged sensitive preamplifiers. The acquisition can be channel independent and it is possible to make coincidence/anti-coincidence logic among different channels and external veto/gating. Multiple boards can be synchronized to build up complex systems.

In case of DPP mode, data can be saved in time-stamped list mode to support higher input rates and improving the throughput performances. Piled-up events can be rejected or saved for offline analysis. The acquisition in DPP mode is fully controlled by the CoMPASS and MC<sup>2</sup>Analyzer software, which manage the algorithm parameters, build the plots and saves the relevant energy, time, and PSD spectra. In case of waveform recording mode, the user can take advantage of the CAENScope and WaveDump software to access and save the waveforms.

### APPLICATIONS

- Nuclear and Particle Physics
- Dark Matter and Astroparticle Physics
- Fast Neutron spectroscopy
- Homeland Security

### FORM FACTOR



### FUNCTIONS

ICH WV TS TDC QDC CFD PHA PSD ZS DAW

## Maximum flexibility

### APPLICATION NOTES

- AN5157 • GD2783
- AN5995 • GD2827

Libraries and demo software in C and LabView are available for integration and customization of specific acquisition systems. 725 family comes in three form factors: VME (16 or 8 input channels), NIM (8 input channels) and Desktop (8 input channels). The communication to and from the board is provided through the following interfaces: USB (Desktop and NIM form factors), VMEbus (VME form factor), and Optical Link (all form factors).

### Features

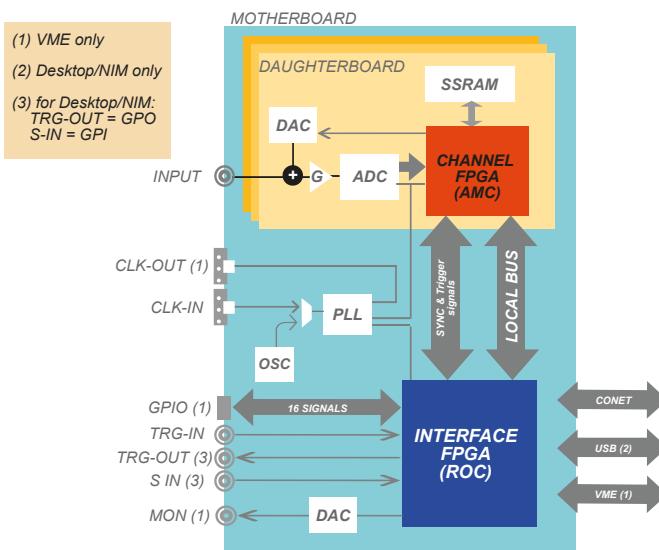
- 14-bit @ 250 MS/s
- Analog inputs on MCX coax. connectors
- VME64/VME64X (16/8 ch.), NIM (8 ch.) and Desktop (8 ch.) modules
- 0.5 and 2 Vpp software selectable input dynamic range with programmable DC offset adjustment
- Algorithms for Digital Pulse Processing (DPP)
- VME, USB and Optical Link communication interfaces
- Multi-board synchronization features
- Daisy chain capability
- Demo software tools, Control Software for waveform recording and DPP firmware, C and LabVIEW libraries

| Firmware | Software      | ICH | WV | TS | TDC | QDC | CFD | PHA | PSD | ZS | DAW |
|----------|---------------|-----|----|----|-----|-----|-----|-----|-----|----|-----|
|          | <br>CAEN CAEN |     | •  | •  |     |     |     |     |     |    |     |
|          | <br>CAEN      | •   | •  | •  | •   | •   | •   | •   | •   |    |     |
|          | <br>CAEN CAEN | •   | •  | •  | •   |     |     | •   |     |    |     |
|          | <br>CAEN      |     | •  | •  |     |     |     |     |     | •  |     |
|          | <br>CAEN      | •   | •  | •  |     |     |     |     |     |    | •   |

## Principle of Operation

CAEN Waveform Digitizers are devices able to continuously acquire analog input signals, which are sampled by fast ADCs and stored into digital memories where they are available for readout through different communication interfaces (USB, VMEBus, Optical Link). Depending on the FPGA firmware, the digitizer can work like an oscilloscope to acquire raw waveforms, or perform online processing to calculate parameters such as pulse height, charge, time stamp, pulse shape discrimination. In the latter case, the output data is a time-stamped list of parameters. Data reductions and zero suppression algorithms are also available.

Digitization in CAEN digitizers is based on two main technics: **Flash ADC** and **Switched Capacitor Arrays**.


Flash ADC are the fastest A/D converters, where the sampling and the analog-to-digital conversion are made practically at the same time. Flash ADC are so not affected by dead-time due to conversion. In the Switched Capacitor Arrays, the sampling and the A/D conversion take place at different times, thus introducing a dead-time. Despite of the dead-time, the Switched Capacitor Array Digitizers are able to sample the input pulse at very high frequency, up to 5 GS/s, with high channel density, while the highest Flash ADC frequency is 4 GS/s with a quite low number of channels. If compared to a commercial digital oscilloscope, the waveform digitizer presents a list of differences which make it an advanced instrument for many applications:

- waveform recording with no dead-time due to conversion (Flash ADC digitizers)
- Independent channel self-triggering and event acquisition
- On-line digital pulse processing (DPP) algorithms
- Data reduction
- Multi-board synchronization for system scalability
- Communication interfaces with high bandwidth readout

The benefits of the digital approach are great stability and reproducibility, ability to reprogram and adjust the algorithms to the application, ability to preserve the information of the signal along the entire acquisition chain, flexibility, better correction of baseline fluctuation, pile-up, ballistic deficit, etc.. All in one board.

### CAEN Digitizer block diagram:

- A motherboard which contains one FPGA for the readout interfaces and the services, and defines the form factor.
- One or more daughterboards which define the type of digitizer and contain the signal conditioning input stage, the ADCs, the FPGA for the data processing and the memories.



## Firmware Upgrade

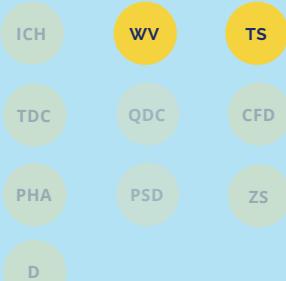
### Firmware



Waveform Recording Firmware

Time windowed waveform recording  
Dead-timeless acquisition  
Multi-buffer memories  
Multi-board synchronization

### Software

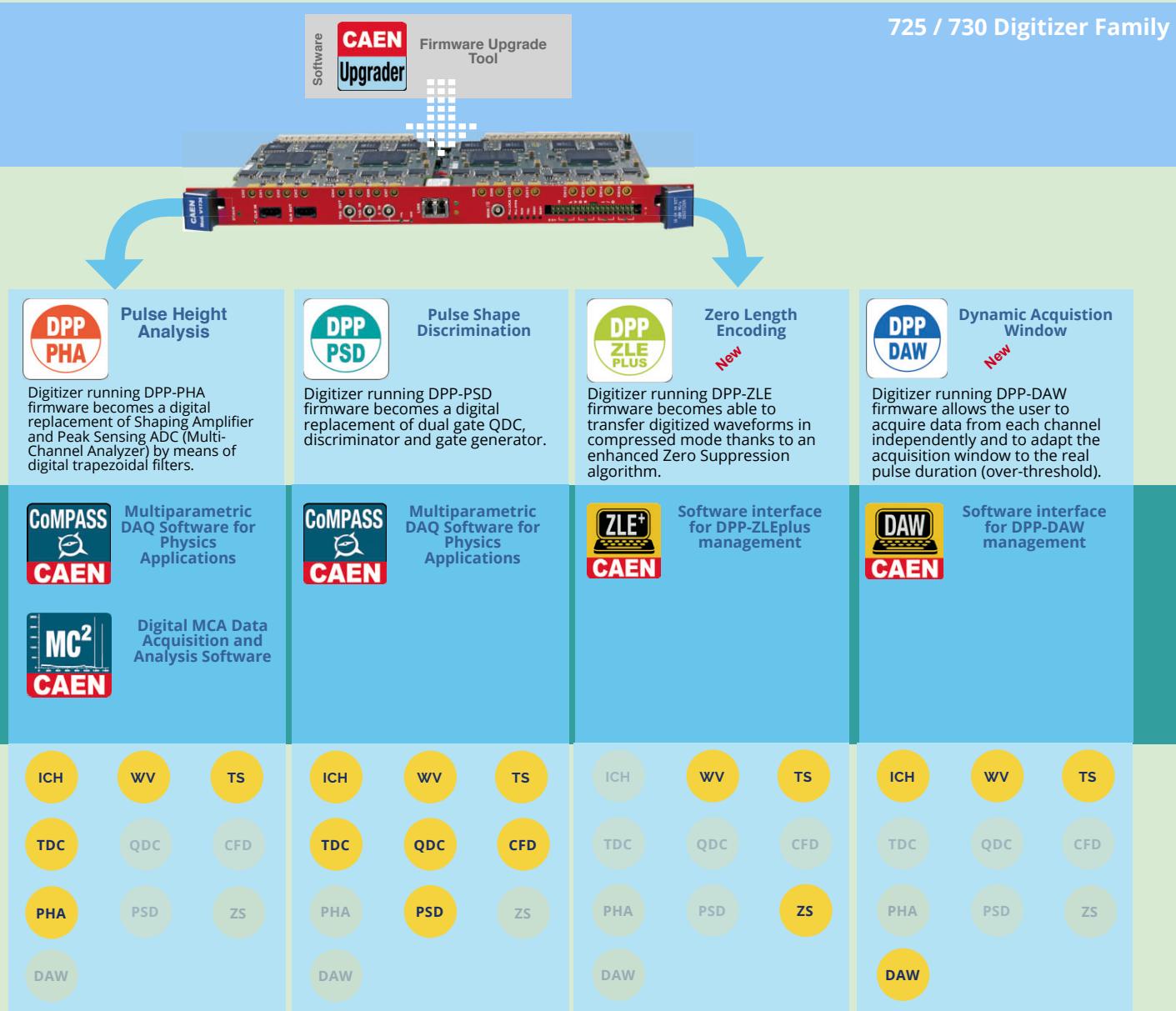



CAEN Digitizer readout application



Digitizer Software for Signal Inspection and waveform recording

### Features




### Feature Acronyms Legend

- ICH** (Independent channels): the trigger and acquire data independently, can be correlated using a user-defined (anti) coincidence logic criteria
- TDC** (Time to Digital Converter): stamp information from the fast digital discriminator filter with sub-ns resolution
- PHA** (Pulse Height Analysis): pulse height analysis of exponential signals or common-mode sensitive preamplifier
- DAW** (Dynamic Acquisition Window): acquisition of a dynamically adjustable number of ADC samples

Developing algorithms for the Digital Pulse Processing (DPP).

Up on the FPGA of the digitizer (firmware upgrade), run it on-line and implement new acquisition and waveform recording.



da

se channels can independently and user-defined a

fine time interpolation with high

se height of any g from charge

ow):  
adjusted



**(Waveforms):** acquisition of a programmable number of ADC samples (raw waveforms)



**(Timestamp):** trigger coarse time stamp with low resolution (10-20 ns)



**(Charge to Digital Converter):** gated integrator (charge)



**(Constant Fraction Discriminator):** digital Constant Fraction Discriminator with programmable delay and fraction. Works in combination with TDC



**(Pulse Shape Discrimination):** particle discrimination via double gated integration



**(Zero Suppression):** acquisition of a programmable number of ADC samples with zero suppression

**Technical Specifications****GENERAL**

**Form Factor**  
1-unit wide, 6U VME64/VME64X  
1-unit wide NIM  
154x50x164 mm<sup>3</sup> (WxHxD) Desktop

**ANALOG INPUT**

**Channels**  
16/8 channels, single ended (VME)  
8 channels, single ended (NIM, Desktop)

**Impedance**

50 Ω

**Connector**

MCX

**Full Scale Range (FSR)**

2 Vpp (0.5 Vpp software selectable)

**Bandwidth**

125 MHz

**Offset**

Programmable DAC for DC offset adjustment. Range: ±1 V @ 2 Vpp, ±0.25 V @ 0.5 Vpp

**DIGITAL CONVERSION****Resolution**

14 bits

**Sampling rate**

250 MS/s simultaneously on each channel

**ADC CLOCK GENERATION**

Clock source: internal/external

On-Board PLL provides ADC sampling clock generation from an internal (50 MHz loc. oscillator) or external reference (50 MHz or 62.5 MHz; other options on request) on front panel CLK-IN connector.

**MEMORY**

640 kS/ch or 5.12 MS/ch Multi-Event Buffer divisible into 1 ÷ 1024 buffers with independent read and write access. Programmable event size and pre-/post-trigger

**TRIGGER****Trigger source**

Self-trigger: channel over/under threshold for either Common or Individual (DPP firmware only)  
trigger generation

External-trigger: Common by TRG-IN or Individual by LVDS connectors (DPP firmware only)

Software-trigger: Common by software command

**Trigger propagation**

TRG-OUT (VME) / GPO (NIM, Desktop) digital output

**Trigger Time Stamp**

Waveform recording firmware/DPP-DAW/DPP-ZLE: 31-bit counter, 16ns resolution, 17 s range(\*); 48-bit extension by firmware

DPP-PHA/PSD: 31-bit counter, 4 ns resolution, 8 s range; 47-bit extension by firmware; 10-bit and 4 ps fine time stamp by digital CFD; 64-bit extension by software

**SYNCHRONIZATION****Clock propagation**

Daisy chain (VME only) through CLK-IN/CLK-OUT connectors

One-to-many clock distribution from an external clock source

Clock Cable delay compensation

**Acquisition Synchronization**

Sync Start/Stop through digital I/O (S-IN, TRG-IN or GPI input, TRG-OUT or GPO output)

External Trigger Time Stamp reset

**LVDS I/O (VME only)**

16 general purpose LVDS I/Os controlled by FPGA

Busy, Data Ready, Memory Full, Individual Trg-Out and other functions can be programmed  
An Input Pattern from the LVDS I/Os can be associated to each trigger as an event marker

**ANALOG MONITOR (VME only)**

12-bit/125 MHz DAC FPGA controlled output with four operating modes:

Trigger Majority / Test Pulses / Memory Occupancy / Voltage Level

**COMMUNICATION INTERFACE****Optical Link**

CAEN CONET proprietary protocol, up to 80 MB/s transfer rate

Daisy chainable: it is possible to connect up to 8/32 ADC modules to a single Optical Link Controller (Mod.A2818/A3818)

**VME**

VME 64X compliant

Data transfer mode: BLT32, MBLT64 (70 MB/s using CAEN Bridge), CBLT32/64, 2eVME, 2eSST (up to 200 MB/s)

**POWER CONSUMPTIONS**

|                                |        |
|--------------------------------|--------|
| Desktop: 2.5 A @ +12 V         |        |
| NIM: 5 A @ +6 V, 300 mA @ -6 V |        |
| VME: V1725                     | V1725x |
| 5.2 A @ +5 V                   | TBD    |
| 750 mA @ +12 V                 |        |
| -12 V not used                 |        |

**Ordering Options**

| Code         | Description                                                                     | Form Factor |
|--------------|---------------------------------------------------------------------------------|-------------|
| WDT5725SXAAA | DT5725S - 8 Ch. 14 bit 250 MS/s Digitizer: 640kS/ch, CE30, SE                   | Desktop     |
| WDT5725SBXAA | DT5725SB - 8 Ch. 14 bit 250 MS/s Digitizer: 5.12MS/ch, CE30, SE                 | Desktop     |
| WN6725S5XAAA | N6725S - 8 Ch. 14 bit 500 MS/s Digitizer: 640kS/ch, CE30, SE                    | NIM         |
| WN6725SBXAAA | N6725SB - 8 Ch. 14 bit 500 MS/s Digitizer: 5.12MS/ch, CE30, SE                  | NIM         |
| WV1725SXAAA  | V1725S - 16 Ch. 14 bit 250 MS/s Digitizer: 640kS/ch, CE30, SE                   | 6U-VME64    |
| WV1725SBXAAA | V1725SB - 16 Ch. 14 bit 250 MS/s Digitizer: 5.12MS/ch, CE30, SE                 | 6U-VME64    |
| WV1725SCXAAA | V1725SC - 8 Ch. 14 bit 250 MS/s Digitizer: 640kS/ch, CE30, SE                   | 6U-VME64    |
| WV1725SDXAAA | V1725SD - 8 Ch. 14 bit 250 MS/s Digitizer: 5.12MS/ch, CE30, SE                  | 6U-VME64    |
| WFWDPPTFA25  | DPP-PHA - Digital Pulse Processing for Pulse Height Analysis (16 ch x725)       | 6U-VME64    |
| WFWDPPTFAD25 | DPP-PHA - Digital Pulse Processing for Pulse Height Analysis for (8ch x 725)    | ALL         |
| WFWDPNGAA25  | DPP-PSD - Digital Pulse Processing for Pulse Shape Discrimination (16 ch x725)  | 6U-VME64    |
| WFWDPNGAD25  | DPP-PSD - Digital Pulse Processing for Pulse Shape Discrimination (8ch x725)    | ALL         |
| WFWDPPTWAA25 | DPP-DAW - Digital Pulse Processing with Dynamic Acquisition Windows (16ch x725) | 6U-VME64    |
| WFWDPPTWAD25 | DPP-DAW - Digital Pulse Processing with Dynamic Acquisition Windows (8ch x725)  | ALL         |
| WFWDPPLZAA25 | DPP-ZLEplus - Digital Pulse Processing Zero Length Encoding for (16ch x725)     | 6U-VME64    |
| WFWDPPLZAD25 | DPP-ZLEplus - Digital Pulse Processing Zero Length Encoding for (8ch x725)      | ALL         |
| WFWDPPS2501A | DPP-SUP - Super Licence for 16ch x 725 Digital Pulse Processing                 | 6U-VME64    |
| WFWDPPS2501D | DPP-SUP - Super Licence for 8ch x 725 Digital Pulse Processing                  | ALL         |

**Accessories**A2818  
PCI CONET ControllerA3818  
PCI Express CONET2 ControllerA654  
MCX to LEMO Cable AdapterA659  
MCX to BNC Cable AdapterA317  
Clock Distribution CableA318  
SE to Differential Clock Cable AdapterAI2700  
Optical Fiber Series

Cables for CONET Optical Link Networks

DT4700  
Clock Generator and FAN-OUT

(\*) Trigger Logic and Trigger Time Stamp counter operate at 125 MHz (i.e. 8 ns or 2 ADC clock cycles), while the counter value is read at a frequency of 62.5 MHz (i.e. 16 ns).