

740 Digitizer Family

64/32 Ch. 12-bit 62.5 MS/s Digitizer

Overview

The 740 is a high channel density CAEN Waveform Digitizer family able to perform basic waveform recording and run online advanced algorithms (DPP) of charge integration. Both the elevate number of channels per board (32 for Desktop and NIM form factor, 64 for VME) and the DPP algorithm make the board a digital replacement of a traditional QDC. Data is read by a Flash ADC, 12-bit resolution and 62.5 MS/s sampling rate, which is well suited for mid-slow signals as the ones coming from inorganic scintillators coupled to PMTs, gaseous detectors and others. Sampling rate can be further reduced using the decimation feature. The acquisition can be channel independent and externally vetoed/gated. Multiple boards can be synchronized to build up complex systems.

In case of DPP mode, data can be saved in time-stamped list mode to support higher input rates and improving the throughput performances. The acquisition in DPP mode is fully controlled by the CoMPASS software (Coming Soon), which manages the algorithm parameters, builds the plots and saves the relevant energy and time spectra. In case of waveform recording mode, the user can take advantage of the CAENScope and WaveDump software to access and save the waveforms. Libraries and demo software in C and LabVIEW are available for integration and customization of specific acquisition systems.

740 family comes in three form factors: VME (64 input channels), NIM (32 input channels) and Desktop (32 input channels). The communication to and from the board is provided through the following interfaces: USB (Desktop and NIM form factors), VMEbus (VME form factor), and Optical Link (all form factors).

APPLICATIONS

- Nuclear and Particle Physics
- Neutrino Physics
- Spectroscopic Imaging
- Homeland Security

FORM FACTOR

FUNCTIONS

ICH WV TS QDC

Very high channel density

APPLICATION NOTES

- AN6308
- GD2827
- GD2783

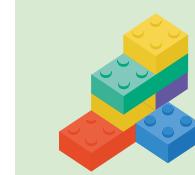
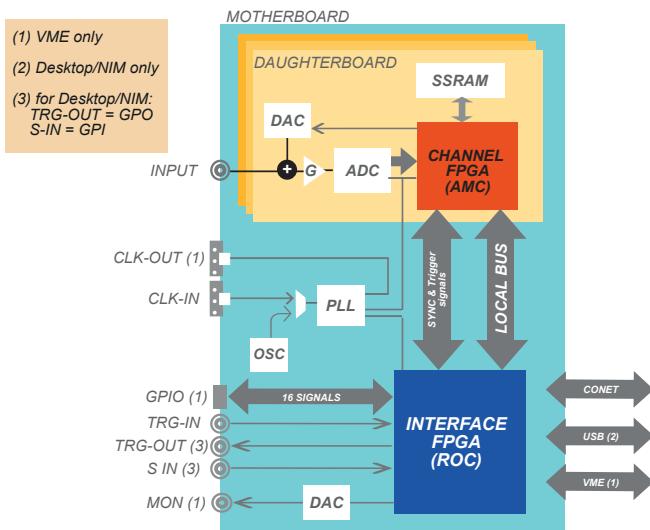
Features

- 12-bit @ 62.5 MS/s
- Analog inputs on ERNI SMC connectors
- VME64/VME64X (64 ch.), NIM (32 ch.) and Desktop (32 ch.) modules
- 2 or 10 Vpp input dynamic range with programmable DC offset adjustment
- Sampling rate decimation factor (software selectable)
- Algorithms for Digital Pulse Processing (DPP)
- VME, USB and Optical Link communication interfaces
- Multi-board synchronization features
- Daisy chain capability
- Demo software tools, Control Software for waveform recording and DPP firmware, C and LabVIEW libraries

Firmware	Software	ICH	WV	TS	QDC
			•	•	
		•	•	•	•

DPP-QDC firmware is supported by x740D version only

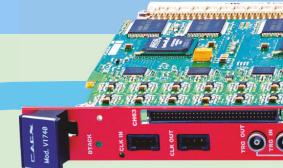
Principle of Operation



CAEN Waveform Digitizers are devices able to continuously acquire analog input signals, which are sampled by fast ADCs and stored into digital memories where they are available for readout through different communication interfaces (USB, VMEBus, Optical Link). Depending on the FPGA firmware, the digitizer can work like an oscilloscope to acquire raw waveforms, or perform online processing to calculate parameters such as pulse height, charge, time stamp, pulse shape discrimination. In the latter case, the output data is a time-stamped list of parameters. Data reductions and zero suppression algorithms are also available. Digitization in CAEN digitizers is based on two main techniques: **Flash ADC** and **Switched Capacitor Arrays**. Flash ADC are the fastest A/D converters, where the sampling and the analog-to-digital conversion are made practically at the same time. Flash ADC are so not affected by dead-time due to conversion. In the Switched Capacitor Arrays, the sampling and the A/D conversion take place at different times, thus introducing a dead-time. Despite of the dead-time, the Switched Capacitor Array Digitizers are able to sample the input pulse at very high frequency, up to 5 GS/s, with high channel density, while the highest Flash ADC frequency is 4 GS/s with a quite low number of channels. If compared to a commercial digital oscilloscope, the waveform digitizer presents a list of differences which make it an advanced instrument for many applications:

- Waveform recording with no dead-time due to conversion (Flash ADC digitizers)
- Independent channel self-triggering and event acquisition
- On-line digital pulse processing (DPP) algorithms
- Data reduction
- Multi-board synchronization for system scalability
- Communication interfaces with high bandwidth readout

The benefits of the digital approach are great stability and reproducibility, ability to reprogram and adjust the algorithms to the application, ability to preserve the information of the signal along the entire acquisition chain, flexibility, better correction of baseline fluctuation, pile-up, ballistic deficit, etc.. All in one board.

CAEN Digitizer block diagram:


- A motherboard which contains one FPGA for the readout interfaces and the services, and defines the form factor.

CAEN has made a big effort in developing the CAEN 740 Digitizer Family. The user can install a DPP algorithm in the digitizer and use methods that go beyond the simple triggering.

Firmware Upgrade

Firmware

Waveform Recording Firmware

Time windowed waveform recording
 Dead-timeless acquisition
 Multi-buffer memories
 Multi-board synchronization

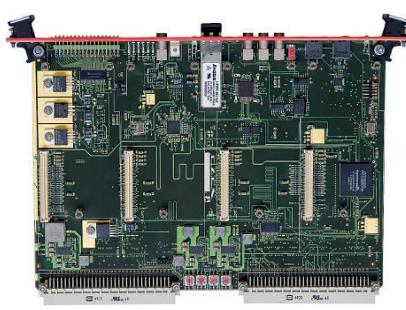
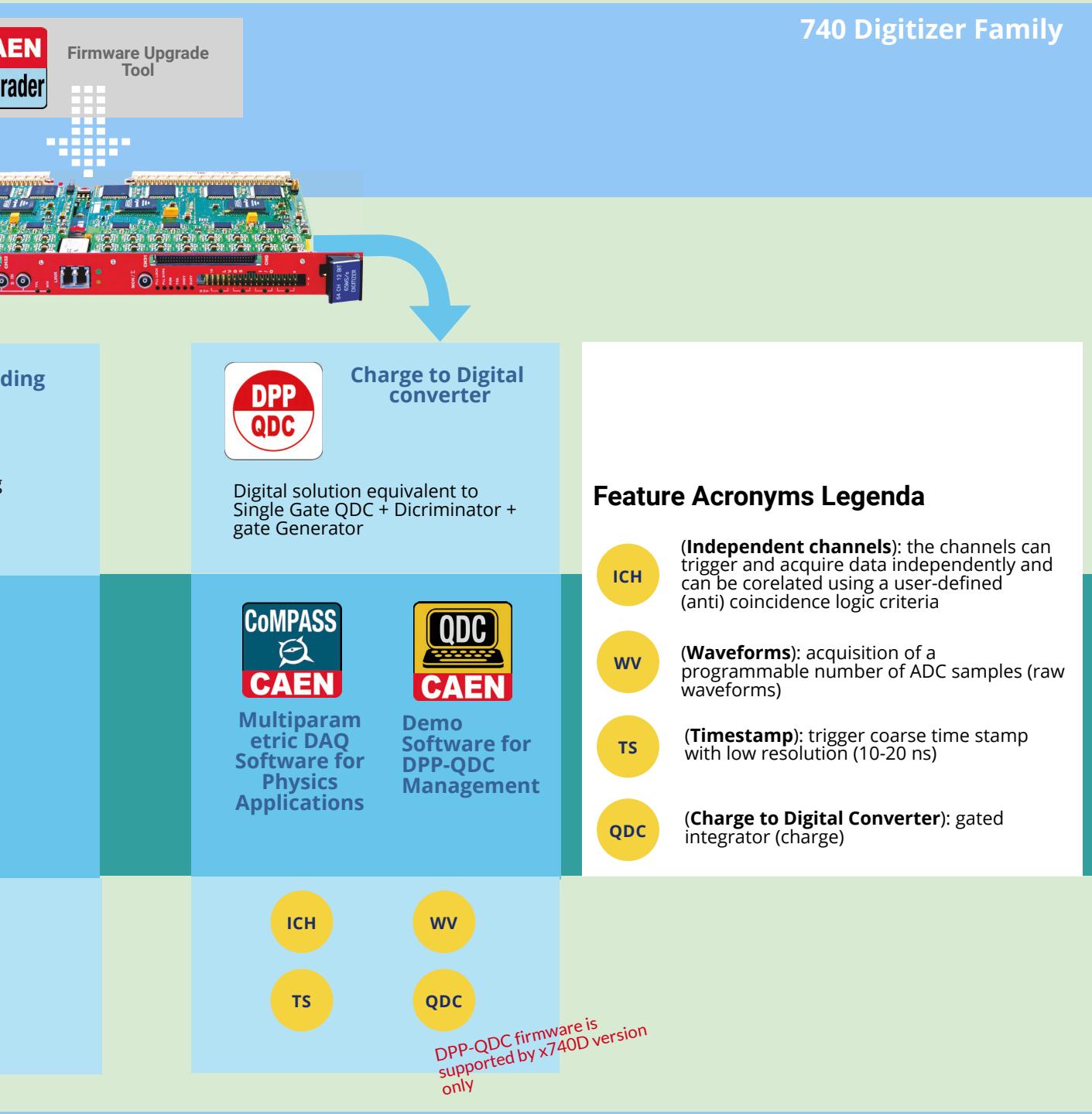
Software

CAEN Digitizer readout application

Features

ICH

WV



TS

QDC

- One or more daughterboards which define the type of digitizer and contain the signal conditioning input stage, the ADCs, the FPGA for the data processing and the memories.

Developing algorithms for the Digital Pulse Processing (DPP).

Algorithm on the FPGA of the digitizer (firmware upgrade), run it on-line and implement new acquisition and simple waveform recording.

MOTHERBOARD

DAUGHTERBOARD

Technical Specifications

GENERAL

Form Factor

1-unit wide, 6U VME64/VME64X

1-unit wide NIM

154x50x164 mm³ (WxHxD) Desktop

ANALOG INPUT

Channels

64 channels, single ended (VME); 32 channels, single ended (NIM)

32 channels, single ended (Desktop) or 16 channels by auxiliary on-board connectors

Impedance

50 Ω (2 Vpp), 1 kΩ (10 Vpp)

Connector

ERNI SMC Dual Row 68pin (VME, NIM and Desktop)

MCX auxiliary (Desktop)

Full Scale Range (FSR)

2 or 10 Vpp (by ordering code)

Bandwidth

30 MHz

Offset

Programmable DAC for DC offset adjustment per each 8-channel group

Range: ±1 V @ 2 Vpp, ±5 V @ 10 Vpp

DIGITAL CONVERSION

Resolution

12 bits

Sampling rate

62.5 MS/s simultaneously on each channel (65 MS/s using external clock)

16.1 MS/s minimum by hardware downsampling (*)

488 kMS/s minimum by firmware decimation (8-step programmable)

ADC CLOCK GENERATION

Clock source: internal/external

On-Board PLL provides ADC sampling clock generation from an internal (50 MHz loc. oscillator) or external reference (50 MHz or 62.5 MHz; other options on request) on front panel CLK-IN connector.

MEMORY

192 kS/ch or 1.5 MS/ch Multi-Event Buffer divisible into 1 ÷ 1024 buffers with independent read and write access. Programmable event size and pre-/post-trigger

TRIGGER

Trigger sources

Self-trigger: channel over/under threshold for either Common or Individual (DPP firmware only) trigger generation

External-trigger: Common by TRG-IN or Individual by LVDS connectors (DPP firmware only)

Software-trigger: Common by software command

Trigger propagation

TRG-OUT (VME) / GPO (NIM and Desktop) digital output

Trigger Time Stamp

Waveform recording firmware: 31-bit counter, 16 ns resolution, 17 s range(**); 48-bit extension by firmware

DPP-QDC Firmware: 32-bit counter, 16 ns resolution, 68 s range; 48-bit extension by firmware; 64-bit extension by software

SYNCHRONIZATION

Clock propagation

Daisy chain (VME only) through CLK-IN/CLK-OUT connectors

One-to-many clock distribution from an external clock source

Clock Cable delay compensation

Acquisition Synchronization

Sync Start/Stop through digital I/O (S-IN, TRG-IN or GPI input, TRG-OUT or GPO output)

External Trigger Time Stamp reset

LVDS I/O (VME only)

16 general purpose LVDS I/Os controlled by FPGA

Busy, Data Ready, Memory full, Individual Trig-Out and other functions can be programmed. An Input Pattern from the LVDS I/Os can be associated to each trigger as an event marker

ANALOG MONITOR (VME only)

12-bit/125 MHz DAC FPGA controlled output with four operating modes: Trigger Majority / Test Pulses / Memory Occupancy / Voltage Level

COMMUNICATION INTERFACE

Optical Link

CAEN CONET proprietary protocol, up to 80 MB/s transfer rate

Daisy chainable: it is possible to connect up to 8/32 ADC modules to a single Optical Link Controller (Mod. A2818/A3818)

USB (NIM and Desktop direct, VME via V1718 bridge)

USB 2.0 compliant (transfer rate up to 30 MB/s)

VME

Data transfer mode: BLT32, MBLT64 (70 MB/s using CAEN Bridge), CBLT32/64, 2eVME, 2eSST (up to 200 MB/s)

POWER CONSUMPTIONS

Desktop: 1.9 A @ 12 V (Typ.)

NIM: 3.9 A @ +6 V, 420 mA @ -6 V

VME: 4.5 / 4.9 A @ +5 V, 250 mA @ +12 V, -12 V not used

(**) Trigger Logic and Trigger Time Stamp counter operate at 125 MHz (i.e. 8 ns or 1/2 ADC clock cycles), while the counter value is read at a frequency of 62.5 MHz (i.e. 16 ns).

Ordering Options

Code	Description	Form Factor
WDT5740XAAA	DT5740 - 32 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C16, SE	Desktop
WDT5740CXAAA	DT5740C - 10Vpp input 32 Ch. 12 bit 62.5MS/s Digitizer: 192kS/ch, EP3C16, SE	Desktop
WDT5740DXAAA	DT5740D - 32 Ch. 12 bit 62.5 MS/s Digitizer: 192kSch, EP3C40, SE	Desktop
WN6740DXAAA	N6740D - 32 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C40, SE	NIM
WN6740XAAAA	N6740 - 32 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C16, SE	NIM
WN6740CXAAA	N6740C - 10Vpp input 32 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C16, SE	NIM
WV1740XAAAA	V1740 - 64 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C16, SE	6U-VME64
WV1740AXAAAA	V1740A - 10Vpp input 64ch 12bit 62.5MS/s Digitizer: 1.5 MS/ch, EP3C16, SE	6U-VME64
WV1740BXAAA	V1740B - 64 Ch. 12 bit 62.5 MS/s Digitizer: 1.5 MS/ch, EP3C16, SE	6U-VME64
WV1740CXAAA	V1740C - 10Vpp input 64ch 12bit 62.5MS/s Digitizer: 192kS/ch, EP3C16, SE	6U-VME64
WV1740DXAAA	V1740D - 64 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C40, SE	6U-VME64
WVX1740XAAA	VX1740 - 64 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C16, SE	6U-VME64X
WVX1740AXAAA	VX1740A - 10Vpp input 64 Ch. 12 bit 62.5 MS/s Digitizer: 1.5 MS/ch, EP3C16, SE	6U-VME64X
WVX1740BXAAA	VX1740B - 64 Ch. 12 bit 62.5 MS/s Digitizer: 1.5 MS/ch, EP3C16, SE	6U-VME64X
WVX1740CXAAA	VX1740C - 10Vpp input 64 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C16, SE	6U-VME64X
WVX1740DXAAA	VX1740D - 64 Ch. 12 bit 62.5 MS/s Digitizer: 192kS/ch, EP3C40, SE	6U-VME64X
WFWDPPQDCAA	DPP-QDC- Digital Pulse Processing for Time Stamped Digital QDC (64ch x/740D)	6U-VME64 VME64X
WFWDPPQDCAA	DPP-QDC- Digital Pulse Processing for Time Stamped Digital QDC (32ch x/740D)	Desktop NIM

Accessories

A746D 32 Channel Adapter for LEMO connector	A746B 64 Channel Adapter for LEMO connector	A746E 32ch Adapter for Lemo connector
A2818 PCI CONET Controller	A3818 PCI Express CONET2 Controller	A654 MCX to LEMO Cable Adapter
A659 MCX to BNC Cable Adapter	A317 Clock Distribution Cable	A318 SE to Differential Clock Cable Adapter
AI2700 Optical Fiber Series		DT4700 Clock Generator and FAN-OUT
Cables for CONET Optical Link Networks		

(*) The minimum value may depend on the digitizer model, on the firmware or on the hardware downsampling mode (refer to AN6308 - *Downsampling measurement with CAEN Digitizer 720/724/740/751 families*)