

2740/2745

Digitizer Family

64-Channel 16-bit 125 MS/s

 open
FPGA

16bit
125 MS/s

DESKTOP
RACK
VME
Form Factor

 1/10 GbE
 **OPTICAL
LINK**
 USB 3.0

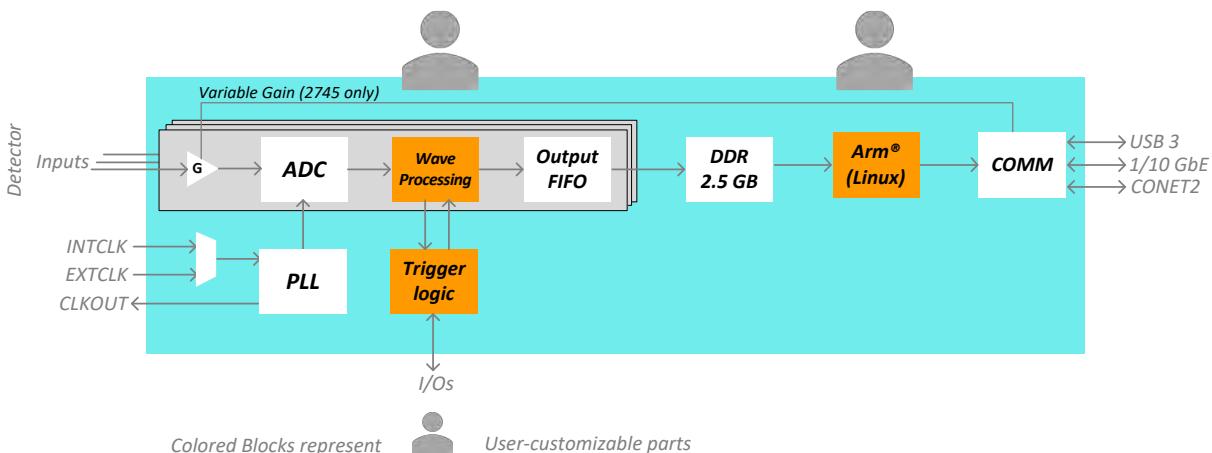
The new generation of CAEN Digitizers: Open FPGA and Digital Pulse Processing algorithms for high-density channel experimental setups!

Overview

The 2740/2745 Digitizer is a 64-channel digital signal processor for radiation detectors available in **VME64** (V2740/V2745), **VME64X** (VX2740/VX2745), and **Desktop** (DT2740/DT2745) form factor. It offers not only waveform digitization and recording but also Multi-Channel Analysis for nuclear spectroscopy using Silicon strip, segmented HPGe, Scintillation detector with PMTs, Wire Chambers, and others. The powerful computational resources of the embedded CPU make the 2740/2745 suitable for different kind of algorithms of pulse processing, from pulse height analysis (PHA) to constant fraction discrimination (CFD, from charge integration (QDC) to pulse shape discrimination (PSD), to be applied independently on each of the 64 channels. While the 2740 Digitizer is fixed-gain, the 2745 offers a software programmable analog gain up to x100.

Highlights

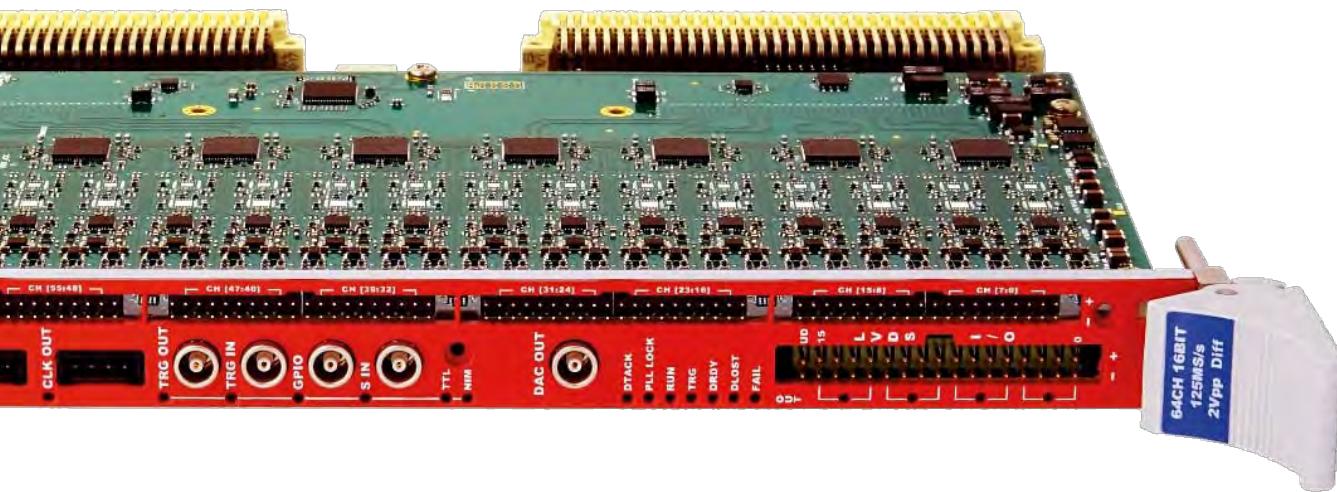
- **High channel density:** 64-channel, 125MS/s 16-bit ADC with individual DC offset adjustment.
- Available in **VME64**, **VME64X** and **Desktop** form factors.
- SW selectable analog gain (2745 only)
- Front panel readout via **USB-3.0**, **1/10 GbE**, **optical link** (CONET2*)
- **2.5 GB** of total acquisition memory (**DDR4**)
- Onboard **Zynq® UltraScale+™** MPSoC integrating an Arm®-based CPU running **Linux®**
- **Open FPGA** architecture for pulse analysis algorithm customization
- Digital pulse processing and waveform recording of 64 independent detectors
- Advanced waveform readout modes with **Zero Length Encoding*** (ZLE) or **Dynamic Acquisition Window*** (DAW)
- Originally designed for Dark Matter Physics applications
- Suitable for Si strip, segmented HPGe, scintillation detectors, and others
- High-resolution Nuclear Spectroscopy: multiport MCA operating in **PHA**, **PSD** modes
- **Digital CFD*** for sub-ns timing measurements
- DAC output (125 MS/s, 2Vpp) for signal inspection, pulse generation, majority level


Software

- User-friendly readout software for multiparametric spectroscopy (**CoMPASS**) or waveform recording (**WaveDump2**)
- Firmware/software generator and compiler for the Open FPGA (**Sci-Compiler**), not requiring FPGA programming skills.
- Libraries (**FELib**) and demo codes available for software customization

(*) Future Developments

2740 / 2745 DIGITIZER ARCHITECTURE


Operating Modes

Analog input channels are provided differential (on 2740/2745 versions) or single-ended (on 2740B/2745B versions). Each channel of the module digitizes the analog input, that can be the signal coming from a physics detector, with a 16-bit, 125 MS/s ADC. The sampled data are used to initiate the digital pulse processing sequence, managed in the FPGA at the firmware level. Different firmware types can be selected via software, according to the specific setup and acquisition mode.

Common trigger: all channels acquire simultaneously with a common trigger. The trigger can be fed externally or generated by a combination of individual channel discriminators. This mode is mainly intended for the acquisition of waveforms, like a digital oscilloscope. Options for zero suppression are available to remove not significant data

Independent trigger: suited for trigger-less applications, where no global trigger is needed but each channel acquires waveforms upon its self-trigger which fires through a digital discriminator, independently of the others.

DPP: real-time processing in the FPGA allows for the extraction of physical parameters from the waveform (e.g. pulse height, charge, timestamp, PSD), well suited for high counting rate applications. It is yet possible to save both raw waves and parameters.

FPGA

For users wishing to personalize the acquisition implementing their own pulse processing algorithms in the Open FPGA, SCI-Compiler is a user-friendly graphic tool able to generate and compile customized firmware and software, even without FPGA programming skills.

The Open FPGA also permits controlling the Data Output information and customizing the trigger logic to get several combinations of self-triggers and I/O signals to validate or discard the events. The onboard CPU allows running custom software for data reduction and analysis.

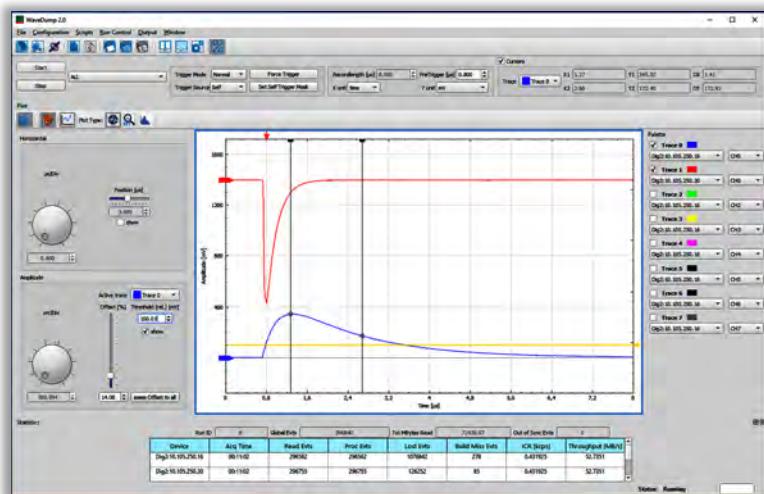
Synchronization

Multi-board synchronization can be implemented via backplane or front panel easy-cabling options.

Connectivity

Multi-interface: **USB-3.0** and CONET* **optical link** or **1/10 Gb Ethernet** (switchable on the same socket)

(*) CONET: CAEN Daisy Chainable Optical Link Protocol


Data Acquisition

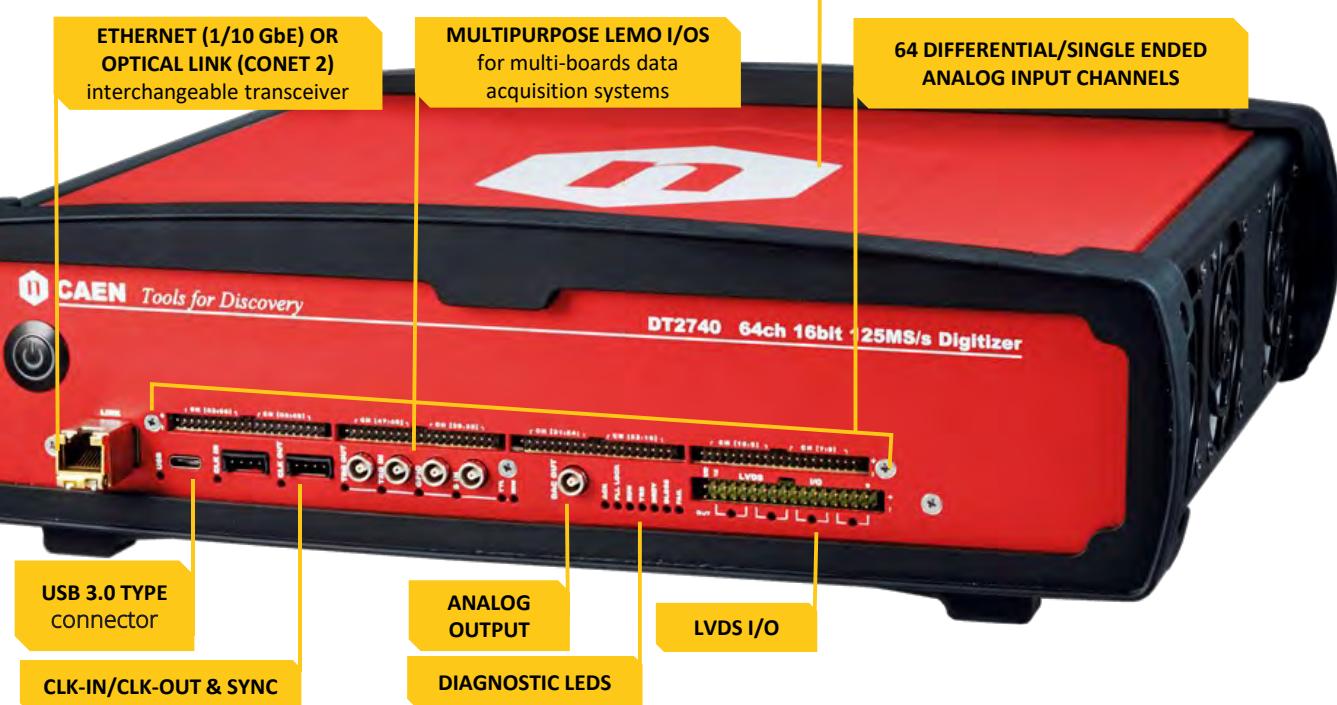
The 2740/2745 Digitizer can manage the entire acquisition chain, from the input signal sampling in the ADC to the processing of the signal and readout. Thanks to the open FPGA architecture and **Sci-Compiler** tool, it is possible to customize the firmware for pulse processing, while the Arm hosted onboard permits writing custom software. These features make the Digitizer a highly compact and flexible readout module that can be tailored to different types of applications: nuclear spectroscopy with segmented germanium detectors, readout of Silicon strips, waveform capture for gamma-ray tracking, sub-ns timing measurements are among the possibilities.

For those users who do not need to customize the digital pulse processing, we provide a series of firmware and software for:

- Waveform recording using common-trigger
- Energy Spectrum recording using PHA (QDC, PSD, etc.) mode
- Pulse shape discrimination
- Sub-ns timing measurements using digital CFD
- Advanced Waveform readout using ZLE (Zero Length Encoding) or DAW (Dynamic Acquisition Window)

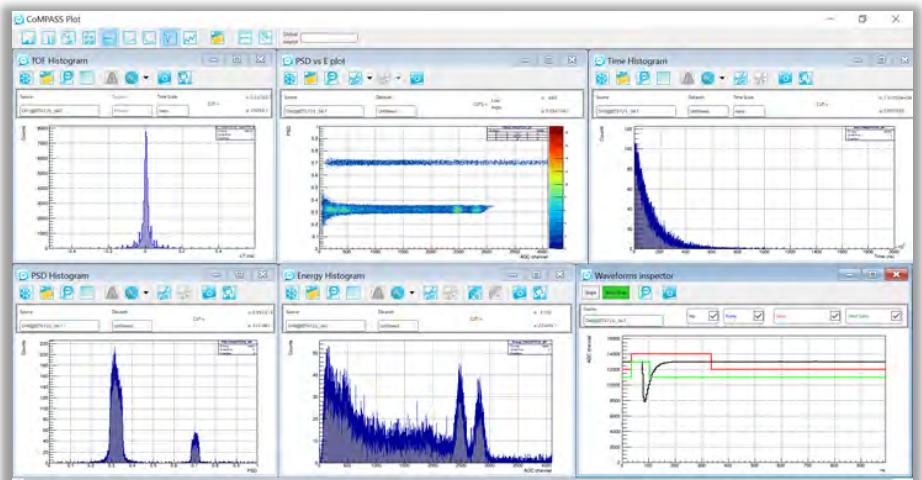
CAEN provides two ready-to-use user-friendly readout software: **WaveDump2** for waveform recording using common-trigger firmware and **CoMPASS**, a multiparametric DAQ software to manage the other Digital Pulse Processing algorithms. Multiple boards can even be managed providing a simultaneous plot of waveforms and other quantities of interest.

WaveDump2 software


- Waveform recording application
- Multi-board management
- Simultaneous plot of waveforms from up to 8 input channels
- Flexible and easy configuration of channel and trigger settings
- Runtime FFT analysis

WaveDump2 is a C++ software supporting the Digitizer Series 2.0 running the scope firmware for the waveform recording provided by CAEN. Developed upon **Qt cross-platform** application development framework, the advanced and user-friendly configuration GUI provides all the necessary tools and functionalities for managing any hardware parameter from the basic ones to the most specific ones. The settings can be conveniently stored into or loaded from a configuration file. Data acquisition from multiple boards and multi-board synchronized systems are managed through a dedicated toolbar. The collected data can be saved to ASCII or binary files for offline analysis.

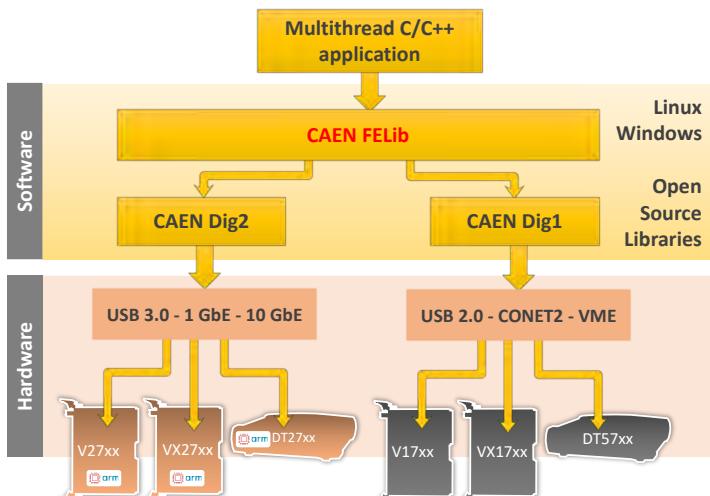
The program features a plot section which emulates an 8-channel digital oscilloscope. This tool allows reviewing the acquired waveforms, fine-tuning the device settings and/or troubleshooting potential problems. Cursors are available in the oscilloscope to make on-screen measurements, as well as marker lines to indicate the trigger position and the trigger threshold level. Traces can be individually enabled/disabled, and a legend is available to simply identify the displayed signals. The graphical tool offers a zooming control on both vertical and horizontal direction. Basic processing like FFT and samples histogramming is provided runtime.


WaveDump2 is available for Windows® and Linux® platforms.

CoMPASS multiparametric software

- Simultaneous plot of waveforms, Time, Energy, PSD, and TOF spectra
- Online filtering (Time, Energy, PSD)
- Multi-board management
- Advanced data saving
- ROOT format data saving

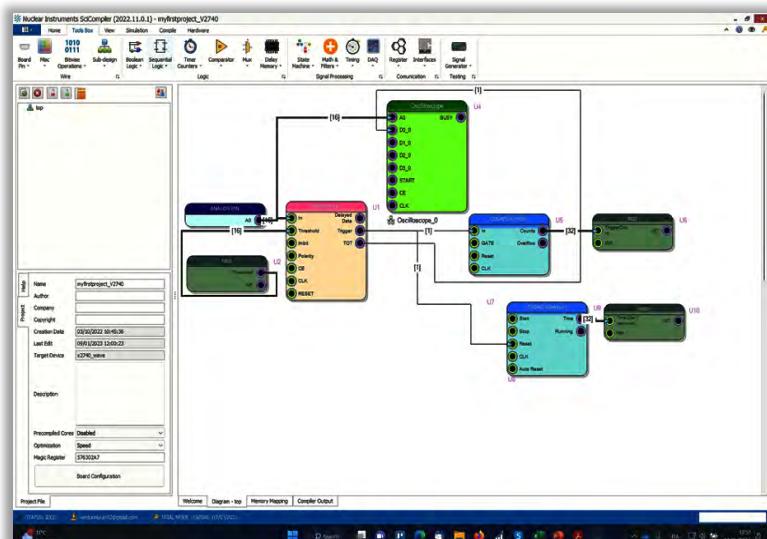
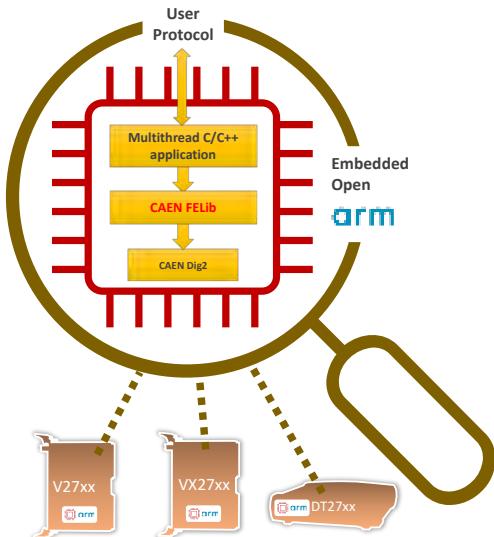
CAEN Multi-PArameter Spectroscopy Software (**CoMPASS**) is the DAQ software for both Digitizer Series 1.0 and 2.0 running the DPP firmware provided by CAEN. It implements a Multiparametric Data Acquisition for Physics Applications: the detectors can be connected directly to the digitizers/MCAs inputs and the software acquires energy, timing, and PSD spectra at the same time.


CoMPASS software has been designed as a user-friendly interface to manage the acquisition with all the CAEN DPP algorithms. It allows an easy setting of the acquisition parameters and to display up to six different plots and histograms at the same time. CoMPASS can manage multiple boards and allows an easy synchronization of multiboard systems. Among the most important features, CoMPASS allows to implement event correlation between different channels (in hardware and/or software), apply energy, PSD and time selections, calculate and show the acquisition statistics (trigger rates, data throughput, percentage of discarded events due to the selections, etc.), perform a basic mathematical analysis of the recorded spectra (ROI selection, background subtraction, peak fitting, etc.), save the output data files (raw data, lists, waveforms, spectra) and use the saved files to run offline with different processing parameters.

To users familiar with the ROOT Analysis Framework, CoMPASS provides the possibility of saving the output files (lists waveforms and spectra) in the ROOT TTree format for an easy post processing with customized analysis code.

CoMPASS is available for Windows® and Linux® platforms.

CAEN FELib Library



- Set of functions designed for controlling and utilizing Digitizers 2.0 (2740, 2745, and 2730 family).
- Available in C/C++ and Python for both Windows and Linux operating systems.
- Distributed as an open-source software under the GNU Lesser General Public License 3.
- Provides multithread support for enhanced performance.
- Support for CAEN Digitizer 1.0 is also available.

CAEN Waveform digitizers x27xx introduce a new way of accessing the firmware parameters, providing an abstraction of the registers in the form of library parameters that are much easier to understand and use.

This new way is designed to simplify the life of those users who need to build their own DAQ system and software and access the digitizer firmware parameters. **CAEN FELib** can be used to control and acquire data from the new generation of CAEN digitizers. This library is only an interface and does not include support for any digitizer family. To use a digitizer, the user must also install the corresponding CAEN Digx library.

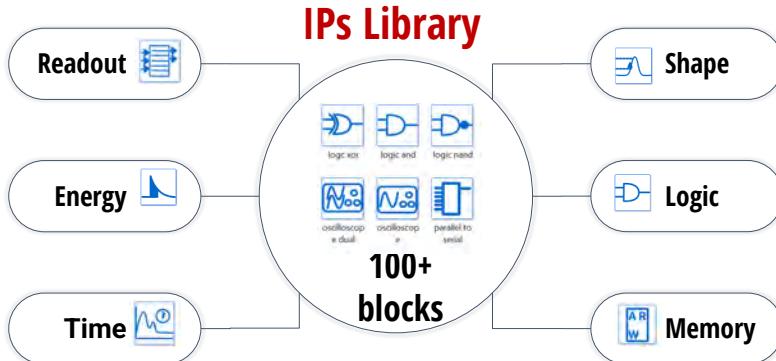
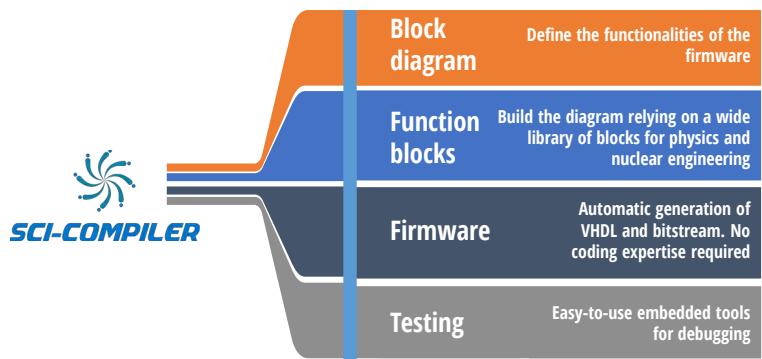
FELib is compatible for Windows® and Linux® (x86 and Arm) platforms.

Sci-Compiler

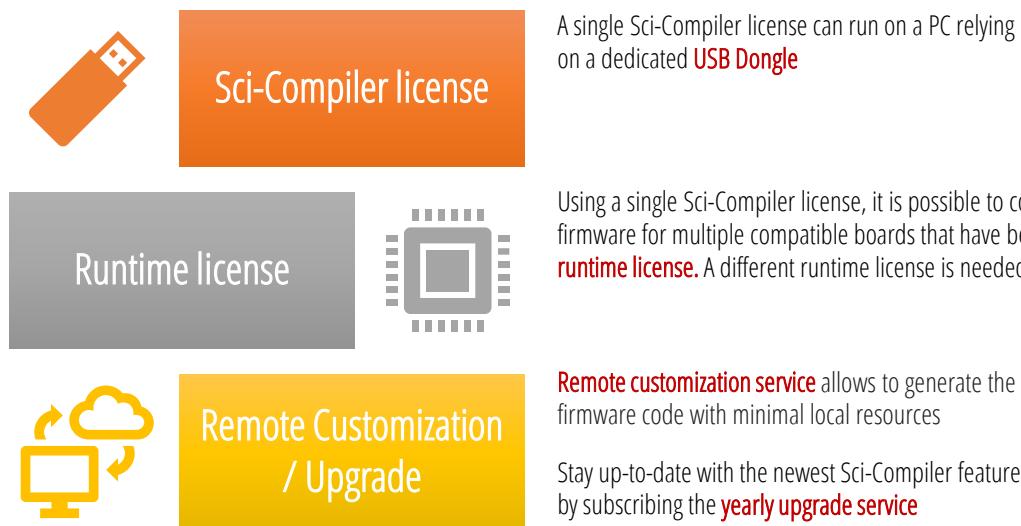
- Block-diagram-based programming tool for CAEN Open FPGA boards
- Designed to make FPGA access easier, even for non-expert programmers
- Offers 100+ advanced signal processing blocks for Physics and Nuclear Engineering
- Provides Remote Customization Service for compilation and simulation with minimal local setup
- Includes embedded tools for debugging and firmware testing

Sci-Compiler, short for Scientific Compiler, is a graphical software tool designed to simplify and expedite the implementation of firmware in physics applications for open FPGA CAEN boards. By creating a block diagram, the software can automatically generate firmware that can be directly deployed on compatible hardware. This means that even users without expertise in VHDL/Verilog programming can create their own firmware code. It is a unique tool that generates and compiles FPGA code, downloads it onto the target device, and allows real-time data acquisition on a host computer.

The Sci-Compiler tool includes over 100 virtual blocks that implement complex functions commonly used in physics applications. These functions include waveform recording, logic gates, TDC (Time-to-Digital Converter), spectrum reconstruction, pulse shape discrimination, and more.



Sci-Compiler is currently available for Windows® platforms.

Sci-Compiler is a software tool that simplifies and accelerates the R&D phase. It allows users to create a diagram by placing and connecting different blocks (e.g. oscilloscope, TDC, MCA, charge integration, etc.) that represent the desired functions. Sci-Compiler then automatically generates and deploys a VHDL code to the FPGA that implements those functions.


This way, even users who are not familiar with VHDL/Verilog can write their own firmware code by focusing on the functional blocks of their application.

In addition, Sci-Compiler provides a Software Development Kit ([Sci-SDK](#)) for Windows and Linux that is compatible with

Sci-Compiler is capable of automatically generating VHDL firmware code that implements the functions specified in the block diagram.

The compilation process is made highly accessible through the optional [Remote Customization Service](#), which allows you to generate an operating firmware even if you don't have a complete FPGA compiler software installed on your local PC. This greatly simplifies the software setup. By utilizing the Remote Customization Service, Sci-Compiler handles the addition of hard-coded components to your project that remain consistent in each firmware, and generates the final firmware file within the [Remote Center](#) and the [MyCAEN+ area](#). This file is then ready to be deployed onboard. CAEN provides the Remote Customization Service and Yearly Upgrade Plan to deliver a high-quality software product with the necessary flexibility to meet the users' requirements.

Ordering Option

Description	Code
SW555 - Sci-Compiler PRO License	WSW555PROXAA
SCI-Compiler runtime license for Digitizers	WSW55RUNTIME
1 year remote customization service + upgrade for Sci-Compiler	WSW55RCSXAAA
5 years remote customization service + upgrade for Sci-Compiler	WSW55RCSX5YA

Technical Specifications

General Features

Analog Inputs

Number of Channels	64	Differential on 274x version / Single-ended on 274xB version
Impedance	50 Ω (Single-ended)	100 Ω (Differential)
Connector	Four 2mm 40-pin header male Input adapters available	
	2740	2745
Full scale range (FSR)	2 V _{pp}	4 V _{pp} ÷ 0.04 V _{pp}
Individual Offset adjustable in the range	± 1.25 V	± 2.5 V
Bandwidth (-3 dB)	50 MHz	20 MHz guaranteed for all Gain settings
Gain	x1	x1 ÷ x100 Software programmable In steps of 0.5 dB independently on each 16-channel group [15:0], [31:16], [47:32], [63:48]

Digital Conversion / System Performance

Resolution	16 bits	
Sampling Rate	125 MS/s (simultaneously on each input). Scalable by 2^n decimation factor, n = 1 to 10 (Scope firmware only)	
	2740	2745
ENOB	11.7 (Typ.)	12.0 (Typ. @5 MHz, -3dB, Gain x1)

Digital I/O and Analog Output

CLK-IN	Two differential pairs: - CLK: reference clock signal - SYNC: synchronization signal (start/stop, T0, etc.)	AC-coupled LVDS, ECL, PECL, LVPECL, CML Zdiff = 100 Ω 2.54 mm 4-pin AMPMODU Mod II male connector
CLK-OUT	Same functionalities as CLK-IN Daisy chainable in multi-board synchronization with sw programmable delay shift	LVDS 2.54 mm 4-pin AMPMODU Mod II male connector
TRG-IN/TRG-OUT/GPIO/S-IN	General-purpose I/Os Software programmable (trigger, gate, veto, busy, etc.) - TRG-IN/S-IN internally terminated with 50 Ω (Zin = 50 Ω) - TRG-OUT requires Rt = 50 Ω - GPIO as Input must be terminated with 50 Ω - GPIO as TTL Output requires Rt = 50 Ω - GPIO as NIM Output requires Rt = 50 Ω or 25 Ω	Single-ended TTL/NIM LEMO 00 male connector
LVDS I/O	16 differential pairs Software programmable I/O (individual self-trigger outputs, trigger validations, Veto, Busy, Start, Stop, Pattern Input, etc.)	LVDS Zdiff = 100 Ω (when set as inputs) 2.54 mm 34-pin AMPMODU Mod II male connector
DAC OUT	DAC output for signal inspection, pulse generation, majority level 14-bit Digital-to-Analog Converter (DAC) 125 MS/s Update Rate	± 1 V @ 50 Ω load ± 2 V @ hi-Z load Output Range LEMO 00 connector

Acquisition Memory

2.5 GB total DDR4 memory size (20.971 MS/ch) divisible in multiple buffers
Maximum record length: ~ 84 ms @ 125 MS/s (total memory size divided by 2)¹

¹ Value referred to the Scope firmware (minimum of two buffers admitted)

Technical Specifications (continued)

Communication Interfaces

1 GbE	Copper RJ45 or optical LC connector on SFP+ transceiver TCP/IP protocol	Transfer rate: 110 MB/s
10 GbE (coming Soon)	Copper RJ45 or LC optical connector on SFP+ transceiver Protocol: TCP/IP, UDP	Transfer rate: 280 MB/s (TCP/IP), t.b.d. (UDP)
CONET (Available on Request)	Optical LC connector on SFP+ transceiver CONET2 protocol (CAEN proprietary)	Transfer rate: 80 MB/s
USB 3.0	USB-C type connector USB 3.1 GEN1 protocol	Transfer rate: 280 MB/s

Trigger and Synchronization

Trigger Modes

Common	All channels acquire simultaneously with the trigger (software, external or logic combination of self-triggers)
Individual	Each channel acquires independently with its self-trigger
Correlated	The individual self-trigger of each channel is validated by the coincidence/anticoincidence logic between other self-triggers and/or external I/Os

Trigger Time Stamp

Resolution:	8 ns coarse time stamp, 8 ps fine time stamp (DPP firmware only)
Counter range:	48 bits
Full-scale range:	~625 h

Synchronization

Clock Propagation	Typical 62.5 ² MHz frequency optionally distributed: - by fan-out to CLK-IN - by CLK-IN/CLK-OUT daisy chain with sw programmable CLK-OUT delay shift ² Custom frequencies can be supported on request
Acquisition Start/Stop	Daisy chain or fan-out propagation through CLK-IN/CLK-OUT or NIM/TTL, LVDS I/O
Data Sync	Busy/Veto logic on LVDS I/Os or NIM/TTL I/Os for event building synchronization
Trigger Time Stamp Reset	Software from START run command or Hardware from S-IN/GPIO input (Scope Firmware only)
Trigger Distribution	TRG-IN/TRG-OUT NIM/TTL LEMO I/Os (common trigger) or LVDS I/Os (common or individual trigger)

Firmware and FPGA

FPGA

Device	Xilinx Zynq UltraScale+ Multiprocessor System-on-Chip mod. XCZU19EG Processing System based on Quad-core Arm with 2GB DDR4 memory @2400 MT/s (Linux OS onboard) Programmable logic with more than 1100K system logic cells and 80Mbit memory
--------	--

CAEN Firmware

DPP Firmware	Developed by CAEN, stored in the on-board FLASH memory, and live rebootable by Web Interface Firmware implementing Digital Pulse Processing algorithms: - DPP-PHA: Pulse Height Analysis - DPP-QDC: Charge Integration - DPP-PSD: Pulse Shape Discrimination - DPP-ZLE: Zero Length Encoding - DPP-DAW: Dynamic Acquisition Window
--------------	--

Scope Firmware	Firmware for the waveform recording
----------------	-------------------------------------

Upgrades	CAEN firmware can be uploaded via Web Interface (scope and DPP firmware, and their updates)
----------	---

User Firmware (Open FPGA)

SCI-Compiler	User Firmware Generator and Compiler Graphical Tool for CAEN Programmable Boards
--------------	--

Scope Personalization	Customizable features of the Scope firmware: - Common trigger - Simultaneous waveform recording on 64 channels management - Trigger logic - Wave processing
-----------------------	---

DPP Personalization	Customizable features of the DPP firmware: - Individual trigger and channel acquisition management - DPP algorithm - Trigger logic - Event data information
---------------------	---

Technical Specifications (continued)

Software

Readout Software

CoMPASS spectroscopy software (CAEN DPP firmware only) for Windows® and Linux®

WaveDump2 (CAEN scope firmware only) for Windows® and Linux®

SCI-Compiler (Open FPGA): Automatic generation of drivers (USB, ethernet), libraries, and demo software for Windows®

Web Interface

Firmware management (e.g. upgrades and on-the-fly selection of the firmware to run), board information, PLL and Ethernet configuration, board status monitoring, DPP license management

SDK and Tools

General-purpose C libraries with demo samples for host Windows® and Linux® PC, and embedded Arm processor

Mechanical

	V2740 / V2740B	VX2740 / VX2740B	DT2740 / DT2740B / DT2745 / DT2745B	
Form Factor	1-unit wide VME64	1-unit wide VME64X 6U	Desktop	Desktop-Rack
Weight	642 g	642 g	3120 g	3170 g
Dimension			338 W x 100 H x 295 L mm ³	19" rack mount (including connectors)

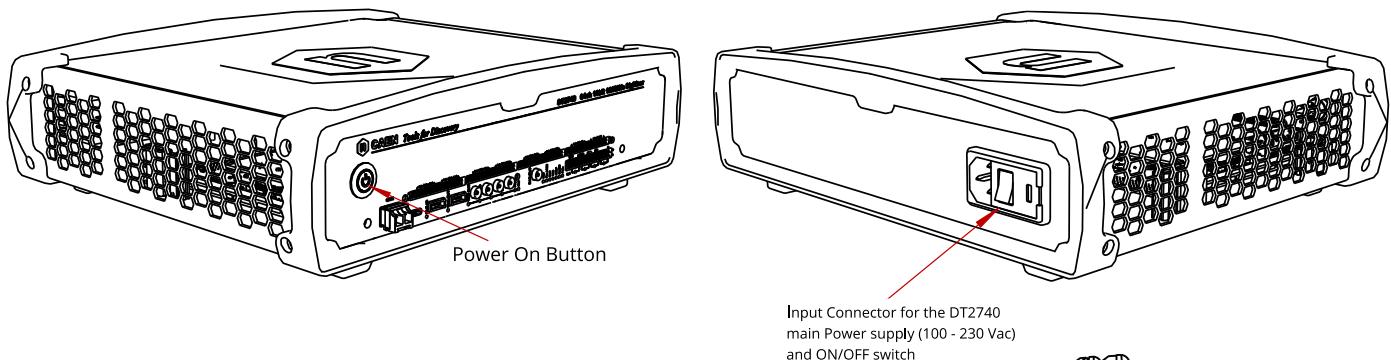
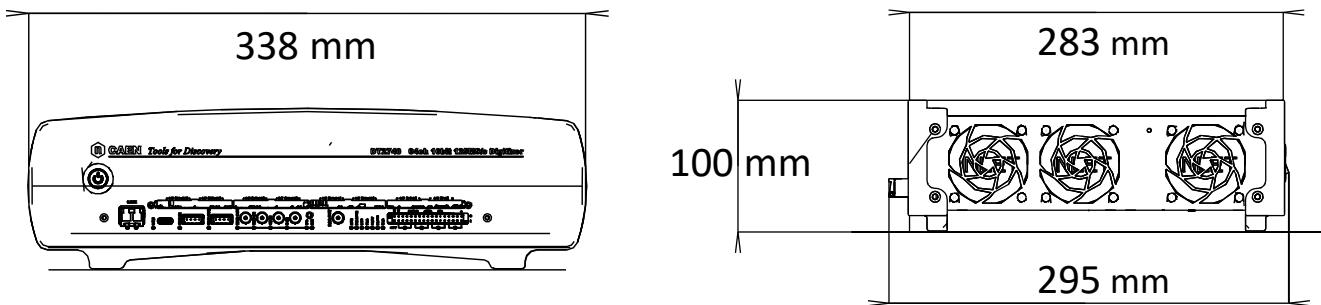
Environmental

Environmental	Indoor use
Operating Temperature	0°C ÷ +40°C
Storage Temperature	-10°C ÷ +60°C
Operating Humidity	10% ÷ 90% RH non condensing
Storage Humidity	5% ÷ 90% RH non condensing
Pollution Degree	2
Altitude	≤2000 m
Overvoltage Category	II
EMC Environment	Commercial and light industrial
IP Degree	Enclosure (desktop models), not for wet location

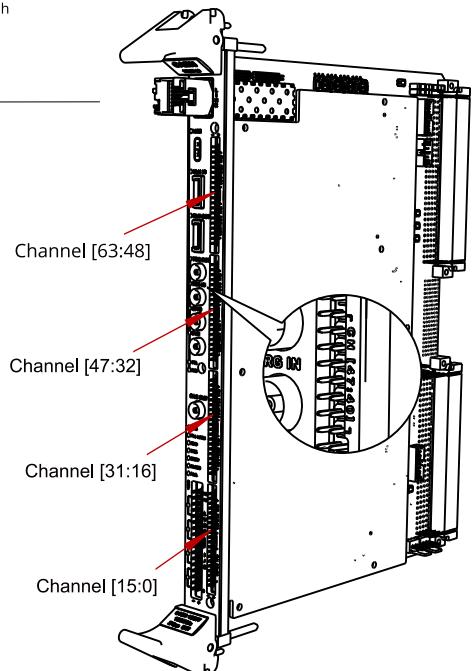
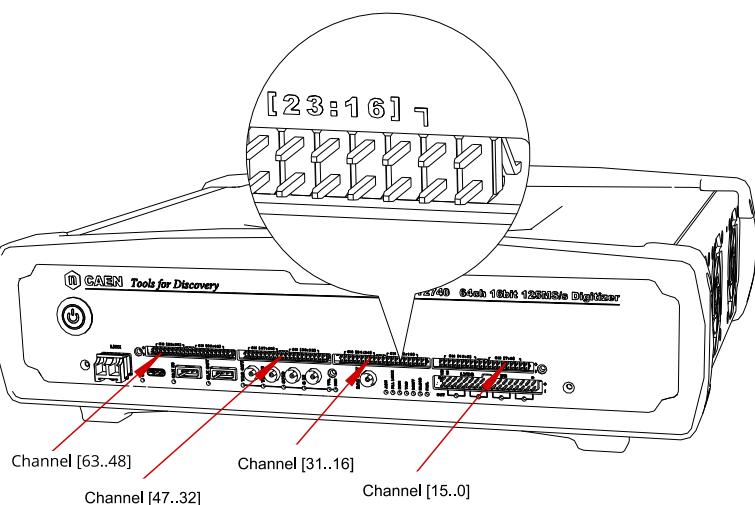
Regulatory

Compliance	EMC: Safety:	CE 2014/30/EU Electromagnetic compatibility Directive CE 2014/35/EU Low Voltage Directive
------------	-----------------	--

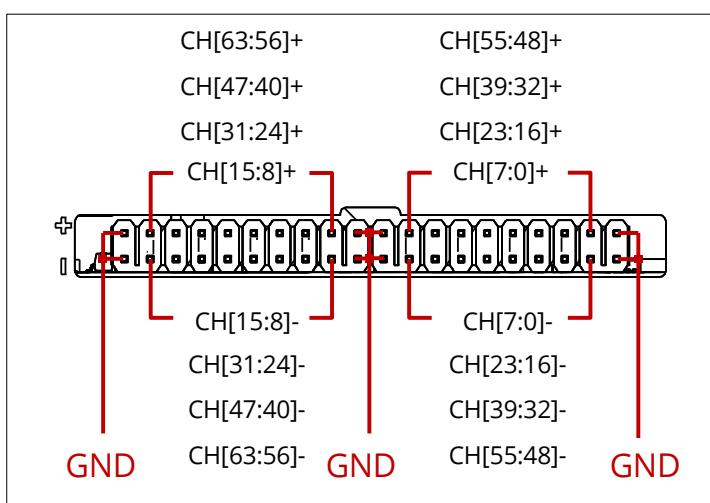
Power Requirements

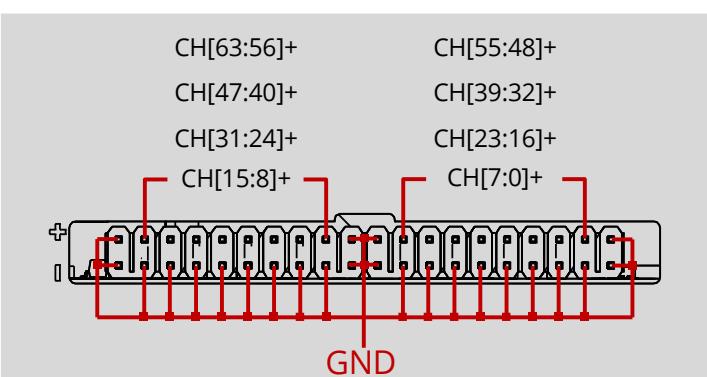


	V2740 / V2740B	VX2740 / VX2740B	DT2740 / DT2740B
+ 12V	1.1 A (Typ)	1.1 A (Typ)	-
+ 5 V	6.2 A (Typ)	2.7 A (Typ)	-
+ 3.3 V	-	4.9 A (Typ)	-

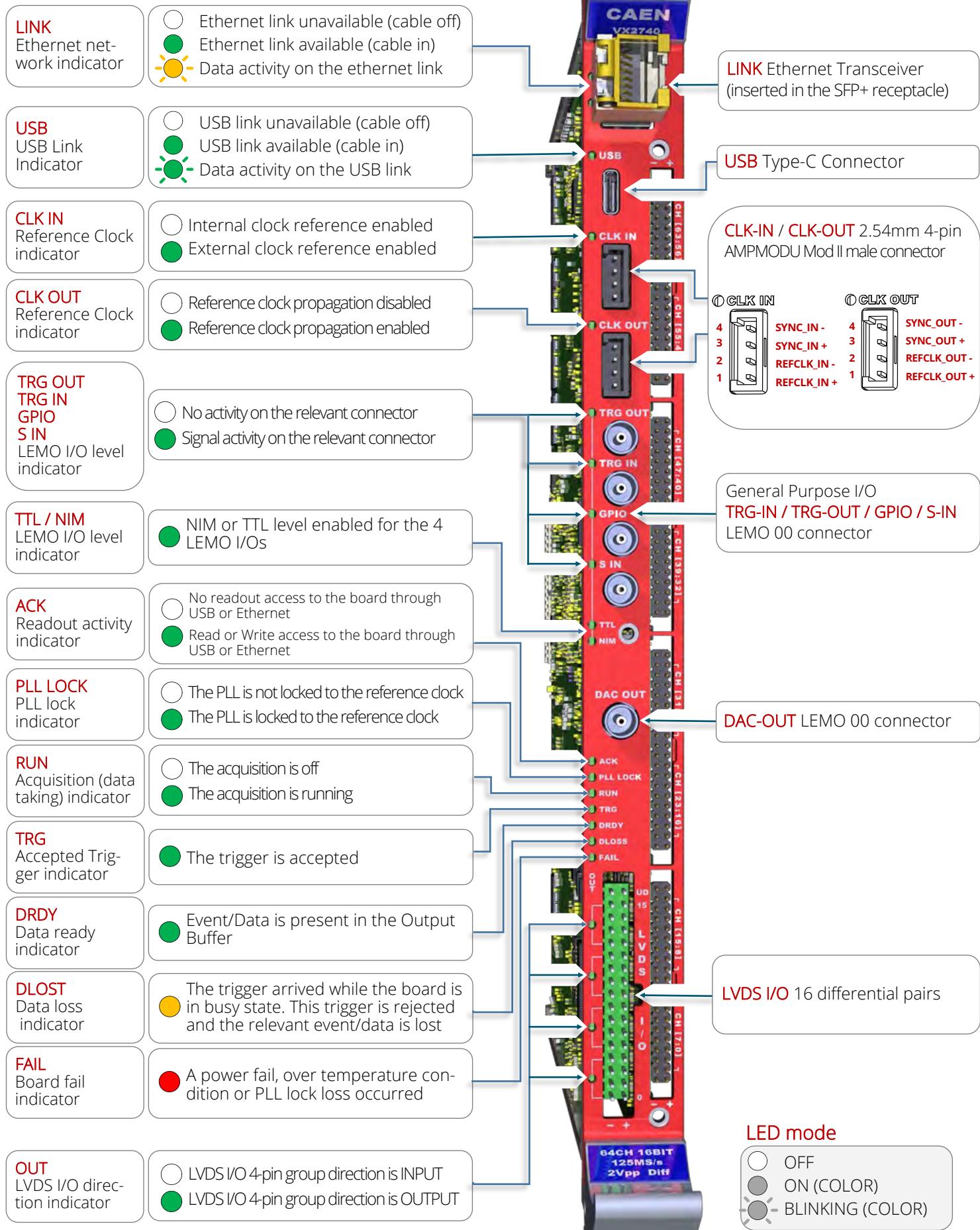
Mains Powered (Max. 130 Watt @ 110/220V)

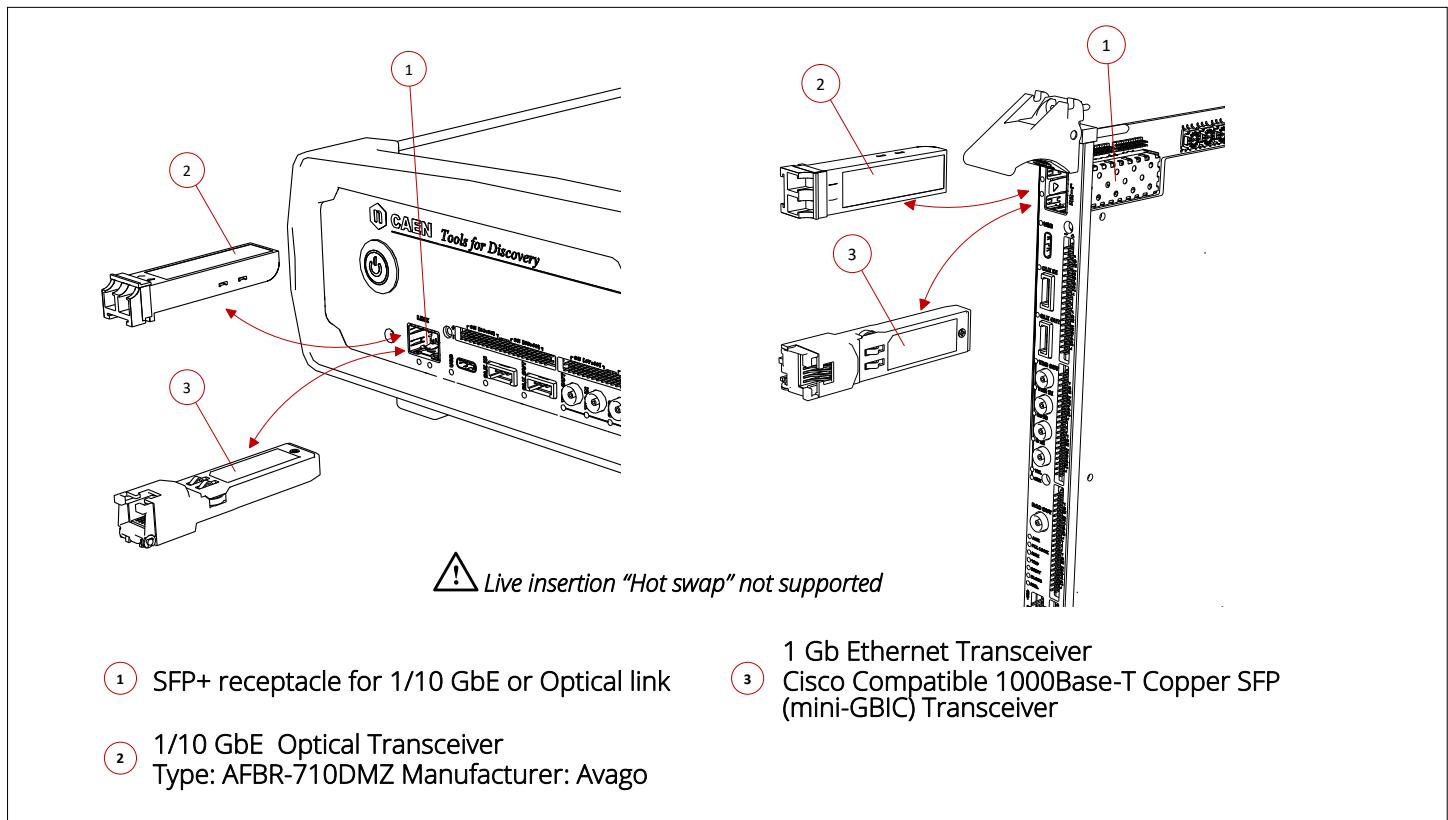


	V2745 / V2745B	VX2745 / VX2745B	DT2745 / DT2745B
+ 12V	1.4 A (Typ)	1.4 A (Typ)	-
+ 5 V	9.0 A (Typ)	5.3 A (Typ)	-
+ 3.3 V	-	4.9 A (Typ)	-

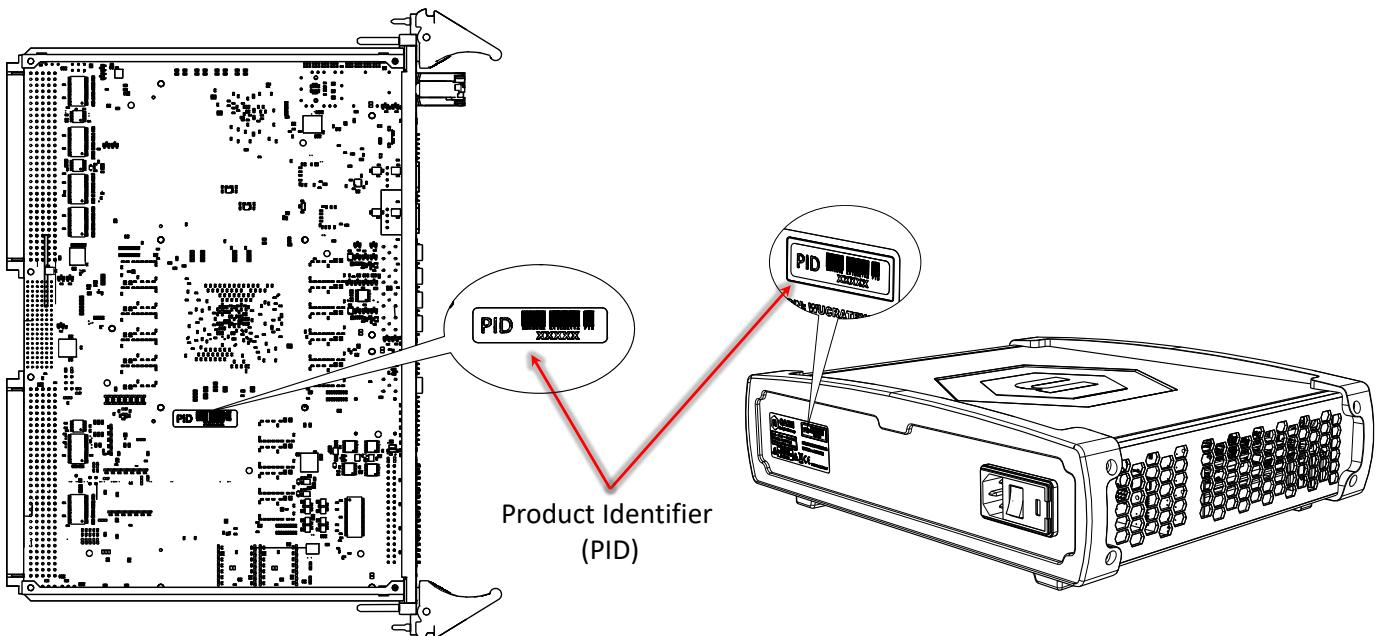
Mains Powered (Max. 130 Watt @ 110/220V)


DT2740/DT2745 Mechanical Dimension


2740/2745 Analog Input Pinout


Differential (2740/2745)


Single-ended (2740B/2745B)


2740/2745 Front Panel and LED behavior

2740/2745 SFP+ receptacle for 1/10 GbE or Optical links

2740/2745 PID (Product Identifier)

PID (Product Identifier) is a unique incremental number greater than 10000 assigned to each CAEN product. It can be found on a label attached to the product (refer to the figure) and is also stored in an onboard non-volatile memory that can be read via the Web Interface.

2740/2745 Accessories

A372F

64 channel 2.54mm Male Header Connector Adapter

The A372F adapter is compliant to all the form factors of the 2740 digitizer. It mechanically adapts to 2.54mm header from the 2mm header mounted on the digitizer, independently of the differential or single-ended standard of the 2740 analog channels.


Dedicated metal supports fixed by screws give stress resistance when plugged in the digitizer inputs.

A319A

Clock & Sync cable assembly

The A319A is a cable assembly for the Clock and Sync signal distribution in 2740 Digitizer. Through the front panel CLK-OUT / CLK-IN daisy chain, this 4-contact cable carries two differential signals from one digitizer to another to synchronize multiple boards.

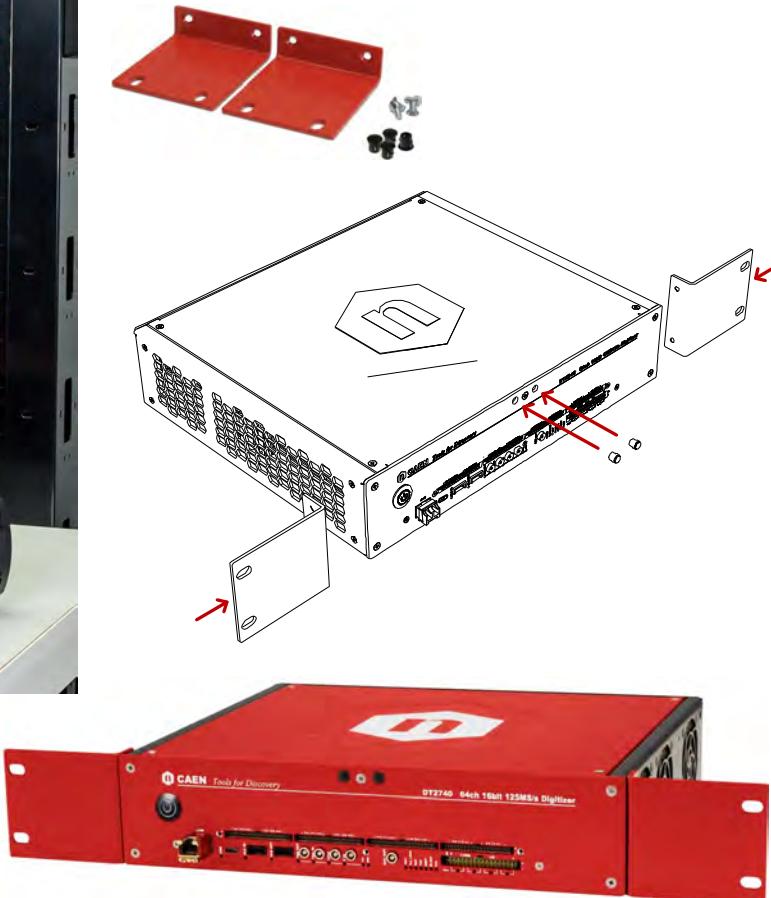
A372M

64 channel MCX Coax Connector Adapter for SE signals

The A372M applies to the 64-channel 2740 Digitizer Family. It must be used with the single-ended input 2740 models and adapts to MCX Coaxial from the 2mm header mounted on the digitizer.

Metal supports fixed by screws give stress resistance when the adapter is mounted in the 2740 digitizer inputs.

A319B


Clock cable assembly from 2740 series to Standard Digitizers

The A319B is a cable assembly for the Clock signal distribution between non homogeneous digitizer series, matching the 3-contact connector on the Standard Digitizer to the 4-pin connector on the 2740 Digitizer Series. Through the front panel CLK-OUT / CLK-IN daisy chain, this cable carries the differential clock signal from one digitizer to another to synchronize multiple boards.

Rack Mounting:

Desktop digitizers (DT5740x/DT5745x) can be rack mounted using 2 brackets included in the product-kit.

μ-crate

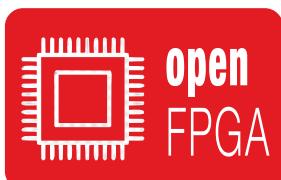
Desktop single-slot VME64X Crate

- Mechanical compatibility: 1-unit VME 6U x 160 mm modules
- Standard power: 10.5 A @+3.3 V, 10 A @+5 V, 2 A @+12 V, 2 A @-12 V
- Fan speed control:
 - Manual adjustment via hardware button (high/low state)
 - Automatic control available only with Digitizer 2.0 series
- Mains power: 100 - 240 V AC (130 W) @ 50 / 60 Hz
- Includes a 19" rack mount kit adapter

The μ-Crate is a mains-powered desktop device integrating a low-noise cooling vents system. The desktop form factor can be optionally converted into a 19" rack thanks to the included metal brackets.

The single-slot backplane supports VME64 and VME64X CAEN boards of the Digitizer 1.0, Digitizer 2.0 Families, the V2495 Programmable Logic Unit, as well as other CAEN boards. Only VME Modules (one-unit, 6U x 160mm) with direct connection on the front panel (via USB-2.0/3.0, CONET optical link or 1/10 GbE) and/or not requiring VME bus control (VME protocols not supported) are compatible with the μ-Crate.

The images above show the μ-Crate product with a Digitizer from the 2.0 Family (VX2740) installed, as well as the two possible configurations: Desktop and rack-mountable (using the two brackets included in the sales kit).


Ordering Option

Description	Code
V2740 - 64 Ch 16 bit 125MS/s Digitizer, Diff	WV2740XAAAAA
V2740B - 64 Ch. 16 bit 125 MS/s Digitizer, SE	WV2740BXAAAA
VX2740 - 64 Ch 16 bit 125MS/s Digitizer, Diff	WVX2740XAAAA
VX2740B - 64 Ch. 16 bit 125 MS/s Digitizer, SE	WVX2740BXAAA
DT2740 - 64 Ch 16 bit 125MS/s Digitizer, Diff	WDT2740XAAAA
DT2740B - 64 Ch. 16 bit 125 MS/s Digitizer, SE	WDT2740BXAAA
V2745 - 64 Ch. 16 bit 125 MS/s Digitizer with Programmable Input Gain, Diff	WV2745XAAAAA
V2745B - 64 Ch. 16 bit 125 MS/s Digitizer with Programmable Input Gain, SE	WV2745BXAAAA
VX2745 - 64 Ch. 16 bit 125 MS/s Digitizer with Programmable Input Gain, Diff	WVX2745XAAAA
VX2745B - 64 Ch. 16 bit 125 MS/s Digitizer with Programmable Input Gain, SE	WVX2745BXAAA
DT2745 - 64 Ch. 16 bit 125 MS/s Digitizer with Programmable Input Gain, Diff	WDT2745XAAAA
DT2745B - 64 Ch. 16 bit 125 MS/s Digitizer with Programmable Input Gain, SE	WDT2745BXAAA

Accessories

A372F - 64 channel Adapter to 2.54mm Male Header Connector for Digitizer Series 2.0	WA372FXAAAAA
A372M - 64 channel Adapter to MCX Coax Connector for Digitizer Series 2.0	WA372MXAAAAA
A319A - Clock & Sync Cable for Digitizers Series 2.0 interconnection (L=20cm)	WA372MXAAAAA
A319B - Clock Cable for Digitizer Series 1.0 to 2.0 interconnection (L=20cm)	WA319BXAAAAA
μ-Crate - Desktop single-slot VME64X Crate	WUCRATEG001A

2740/2745 Digitizer Family

DESKTOP
RACK
VME
Form Factor

CAEN S.p.A.
Via Vetraia 11
55049 - Viareggio - Italy
Phone +39.0584.388.398
Fax +39.0584.388.959
info@caen.it - www.caen.it

CAEN GmbH
Brunnenweg 9
64331 Weiterstadt, Germany
Phone +49 (0)212.254.4077
Mobile +49 (0)151.16.548.484
info@caen-de.com - www.caen-de.com

CAEN Technologies, Inc.
1 Edgewater Street - Suite 101
Staten Island, NY 10305 - USA
Phone +1.718.981.0401
Fax +1.718.556.9185
info@caentechologies.com
www.caentechologies.com

CAENspa India Private Limited
B205, BLDG42, B Wing,
Azad Nagar Sangam CHS,
Mhada Layout, Azad Nagar, Andheri West
Mumbai, Maharashtra 400053, India
info@caen-india.in - www.caen-india.in

2740

2745