CAEN Application Note AN7589

Using Arduino to control A7585DU SiPM Power Supply

Tools for Discovery

Viareggio
June 11th, 2020

Abstract

CAEN A7585D/DU SiPM Power Supply (developed in collaboration with Nuclear Instruments S.r.L) is a compact and
integrated solution to provide stable and noiseless bias for Silicon Photomultipliers (SiPM) arranged in single pixel, matrix
or array [1].

In this Application Note we give a complete step-by-step guide to the usage of A7585DU controlled by Arduino UNO[2].
We describe the hardware setup, the A7585D/DU open-source library and we give practical examples of coding to control
one or more modules. The provided open-source C library exposes all commands supported by the module at high-level
abstraction and allows the user to easily perform configurations and readback of current and voltage values.

Introduction

The A7585D/DU Power Supply is meant to be used for integration in SiPM readout systems for detectors biasing pur-
poses. The module features both analog and digital control (UART, I12C and optional USB) in order to ease the prototyping,
testing and integration processes. For this reason, CAEN makes available a ready-to-use control software (ZEUS, refer to
[1]) as well as an open-source C library with some coding examples to help users in embedding the A7585D/DU in their
own systems.

In this Application Note we show how to use the provided library (available on GitHub) to control one or more A7585DU
SiPM Power Supply. For this purpose, we suggest the usage of a low-cost Arduino UNO platform [2], a compatible Display
with keypad like Deuligne by SNOOTLAB [3], a breadboard, compatible connection cables and a 12 V Power Supply wall
adapter.

Hardware Setup

The A7585DU can be controlled via UART, USB and 12C. While UART and USB are suited for PC control, the 12C is the best
solution to interface multiple modules with a single controller like an Arduino [4], a Raspberry Pl [5] or another suitable
microcontroller. In this Application Note, we use an Arduino UNO platform [2].

12C bus supports device addressing: up to 120 A7585D/DU can be controlled by a single processor without any commu-
nication issue.ln applications where a large number of channels is required to bias many SiPMs, this design can be the
ultimate solution in order to control and monitor multiple devices.

The 12C bus uses just two wires to interface a master device to multiple slaves. In this case, the master device is the
Arduino UNO controller, while the slave devices are the A7585DU modules. The two wires are:

e SDA: bidirectional data transmission between master and slaves (green wire in Fig.1)

e SCL: clock signal generated by the master (yellow wire in Fig.1)

Each device on the 12C has an address that must be unique. Carefully read Sec. if you need to operate with multiple
A7585DU.

The A7585DU must operate with a supply voltage greater than 6V. Therefore, it is not possible to connect the Vin pin of
the A7585DU to the Arduino 5V. Indeed, an external power supply is required, for example connecting a standard 12V
power supply to the Arduino UNO dedicated connector. The 12V wire (violet wire in Fig.1) connects the VIN pin of the
Arduino to the input voltage of the A7585DU.

https://github.com/NuclearInstruments/a7585d_lib

CAEN Application Note AN7589

Using Arduino to control A7585DU SiPM Power Supply

Tools for Discovery

Moreover, the A7585DU requires an additional 5V power supply (red wire in Fig.1) in order to power the 1/0O buffer for
the 12C interface. This buffer allows the user to interface the A7585DU on the 12C with any chip operating with a voltage
between 1.8V and 5.5V.

Finally, the black wire in Fig.1 connects the Arduino UNO ground to the A7585DU ground. This is the minimal configuration
to control the A7585DU module through the 12C bus.

.QCAEN

A7585DU

Fig. 1: Needed hardware connections between Arduino UNO and one A7585DU Power Supply plugged onto a breadboard. Refer to
[1] for the A7585DU pinout.

In our library and examples we included the code to set a display shield with keypad. We used a Deuligne LCD [3]. More
details are given in Sec.. The LiquidCrystals library is used in order to simplify the interfacing to the display with very basic
commands like goto, print string, etc.

Fig. 2: The display used for this Application Note.

Libraries Installation and Description

In order to go through the examples of this Application Note, it is needed to install the A7585D/DU library and LiquidCrys-
tals library. A7585D/DU library is a open-source library provided by CAEN to interface with A7585D/DU Power Supply

CAEN Application Note AN7589

B e _— Using Arduino to control A7585DU SiPM Power Supply

B sketch_mar28a | Arduina 167 - m] X

File Edit Sketch Tools Help

Vesity/Compile Strg+R
Upload Strg+U
SKEIh, \ypload Using Programmer Strg+Umschalt=U
void 5e Exportcompiled Binary Strg+Alt=S
7 oy
Show Sketch Folder Strg+K
! Include Library i Manage Libraries.

veid 14 AddFile.
old 1q Add ZIP Library...
// put your main code here, to run repeatedly:

Arduino libraries
Bridge

EEPROM
Esplora

Ethernet
Firmata

GSM

HID

Keyboard

LiquidCrystal
Mouse

Robot Control
Robot IR Remote
Robot Motor

D

spI

Fig. 3: How to add the needed libraries to Arduino software.

using a high level class, while LiquidCrystals library is an open-source library for LCD display control.
In order to install the libraries, open Arduino UNO software and surf into Sketch— Include Library— Add .ZIP library, as
shown in Fig.3. Then, select the two libraries zip file available at the GitHub repository.

In the following we give a full description of all functions of the A7585D/DU library:

Initialize the library providing 12C module address. Default address is 0x70

-

bool Init(int IICAddress)

Set the HV output maximum compliance voltage (v)

N

void Set_MaxV (float v)

Set HV output maximum output current. The module is switched off if current exceeds the limit

-

void Set_Maxl(float v)

Enable the HV output. If the HV fails due to overcurrent v= false and true to restore HV

N

void Set_Enable (bool v)

Set the HV output ramp speed in V/s

-

void Set_RampVs(float v)

Configure the thermometer connected to the module in order to operate in temperature-compensated mode

-

o v s woN

void Set_TemperatureSensor(HVTemperatureSensors SensorModel, float term_m2, float term_m, float
term_q)

/*SensorModel: Select between standard thermometer already calibrated and custom model

term_m2: quadratic fitting parameter between temperature and ref voltage

term_m: linear fitting parameter between temperature and ref voltage

term_q: offset

*/

Set the filter coefficient applied to the data monitor filter [0...0.9999]. A value closer to 1 means a higher number of averages and a
higher resolution while a value closer to 0 means no filtering and faster response

-

void Set_Filter(float alfa_v, float alfa_i, float alfa_t)

https://github.com/NuclearInstruments/a7585d_lib

CAEN Application Note AN7589

Using Arduino to control A7585DU SiPM Power Supply

Tools for Discovery

2 /*alfa_v: out voltage monitor filter coefficient
3 alfa_i: out current monitor filter coefficient
4 alfa_t: temperature monitor filter coefficient
s */

Set the coefficient provided by SiPM manufacturer expressed is V/°C to compensate the gain variation due to the temperature. A
typically value is -34mV/°C

void Set_SiPM_Tcoef (float tcomp) ‘

-

Emergency switch off withouth HV ramp

void EmergencyOff () ‘

[

Compensation of the current measured zeroing the measurement and removing biasing

void SetlO () ‘

-

The internal PID controller use the voltage value read by the feedback ADC in order to compensate small static error in the
feedforward output setpoint

void Set_DigitalFeedback (bool on) ‘

-

Change the base address of the A7585D/DU. The module address will be the ba added to the status of the address pins.
void Set_IIC_baseaddress(uint8_t ba) .

N

Read the status of all digital I/0 of the module
uint8_t GetDigitalPinStatus () ‘

-

Read the power supply voltage

float GetVin () ‘

N

Read the HV output
float GetVout () ‘

-

Read the output current

float Getlout () .

-

Read the voltage on the reference (analog control only) pin
float GetVref () ‘

-

Read the temperature of the SiPM through the temperature sensor connected to the Vref pin

float GetTref () ‘

-

Read output voltage target

float GetVtarget() ‘

-

Read the DAC set point in Volt
float GetVtargetSP () .

-

CAEN Application Note AN7589

B e _— Using Arduino to control A7585DU SiPM Power Supply

Read the correction voltage applied to the target in order to compensate the temperature

float GetVcorrection () ‘

-

When true, the output voltage is clamped to the compliance voltage

bool GetVCompliance () ‘

N

When true, the module has been switched off due to over current. To restore the module disable and enable the output

bool GetlCompliance () ‘

N

Return the product code of the device

uint8_t GetProductCode () ‘

-

Return the firmware version of the device

uint8_t GetFWVer () ‘

-

Return the hardware version of the device

uint8_t GetHWVer () ‘

-

Return the serial number of the device

uint32_t GetSerialNumber () ‘

-

Read the current HV status (true is on)

bool GetHVOn () ‘

-

When true, the Arduino is connected to the module

bool GetConnectionStatus () ‘

-

Save configuration on flash

void StoreCfgOnFlash () ‘

-

How to control a single A7585DU

After connecting the CAEN A7585DU to the Arduino UNO as explained in Sec., it is possible to access the GitHub library
repository and load the DemoA7585.ino sketch. This demo will init the A7585DU module and generate a ramp between
25V and 80V, increasing/decreasing the output voltage of 1V every second. This example demonstrates the compliance
of the output setpoint swings between 20 and 85V but the maximum output is set to 80V for protection, limiting the full
swing.

DemoA7585.ino
#include <A7585lib.h>

#tinclude <Wire.h>
#include <stdio.h>
#include <stdlib.h>

#tdefine DEV_ADDRESS 0x46

© ® N U AW N e

https://github.com/NuclearInstruments/a7585d_lib

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5

=2

52

CAEN Application Note AN7589

B e _— Using Arduino to control A7585DU SiPM Power Supply

A7585 A7585_dev;

double current_voltage;

double add_step = 1;

void InitNIPM (int device_address)
{

A7585 dev. Init(device_address);
A7585_dev.Set_Mode (0);
A7585_dev.Set_MaxV (80);
A7585_dev.Set_Maxl(10);
A7585_dev.Set_RampVs(25);
A7585_dev.Set_V (50);

}

void setup () {

Serial .begin(115200);
Wire.begin () ;
Serial.printin("Starting A7585 HV demo app. This app will ramp the HV");

InitNIPM (DEV_ADDRESS) ;

if (A7585_dev.GetConnectionStatus())
Serial.println ("Probe connection successful");
else

Serial.printin ("Error connecting device ");

A7585_dev.Set_V (50);
current_voltage =25;
A7585_dev.Set_Enable(true);

}

void loop () {

float cvout, ciout;

if (current_voltage >85) {add_step=-1;}
if (current_voltage <25) {add_step=1;}
current_voltage += add_step;

A7585_dev.Set_V(current_voltage);
cvout = A7585 dev.GetVout();
ciout = A7585_dev. Getlout();

Serial.print(" V: "); Serial.print(cvout); Serial.print(" I: "); Serial.printin(ciout);
delay (1000);
}

From Arduino software, download the code on the processor and surf into Tool— Serial Monitor. Set speed to 115200
and it will be possible to see the readback of the voltage set point.

How to control A7585DU with a Display shield

For this example, we used a Deuligne LCD Display by SNOOTLAB [3], which is based on Arduino. After connecting the dis-
play to the A7585DU as shown in Fig.4, it is possible to access the GitHub library repository and load the DisplayA7585.ino
sketch. The display will be able to communicate with the A7585DU and, using buttons on the display keypad, it is possible
to set HV output voltage (up/down key) and enable/disable the HV output (right key).

DisplayA7585.ino

© ® N U A W N e

#include <LiquidCrystal.h>
#include <A7585lib.h>

#include <Wire.h>
#include <stdio.h>
#include <stdlib.h>
#tdefine DEV_ADDRESS 0x46

LiquidCrystal Icd(8, 9, 4, 5, 6, 7); // select the pins used on the LCD panel

https://github.com/NuclearInstruments/a7585d_lib

Application Note AN7589
CAEN Using Arduino to control A7585DU SiPM Power Supply

Tools for Discovery

U-SET: 56,2341 #
B8, 818uR 58,2260

Fig. 4: Connection of the Deuligne display to the A7585DU.

12 int lcd_key = 0;
13 int adc_key_in

n
o

15 #define btnRIGHT
16 #define btnUP

17 #define btnDOWN

18 #define btnLEFT

19 #define btnSELECT
20 #define btnNONE

21 float vset=50;

2 bool on_off=false;
23 uint32_t tdow;

2 uint32_t tl=0;

25 bool upd=false ,dwd=false;
% float inc=0.01;

v wWwNERL O

29 A7585 A7585_dev;

30 void InitNIPM (int device_address)
31 {

32 A7585_dev. Init(device_address);
33 A7585_dev.Set_Mode (0);

3a A7585_dev.Set_MaxV (80);

35 A7585_dev.Set_Maxl(10);

36 A7585_dev.Set_RampVs(25);

37 A7585_dev.Set_V(50);

38 }

39

40

a1 int read_LCD_buttons () { // read the buttons

22 adc_key_in = analogRead(0); // read the value from the sensor

43
w4 // my buttons when read are centered at these valies: 0, 144, 329, 504, 741

s // we add approx 50 to those values and check to see if we are close

% // We make this the 1st option for speed reasons since it will be the most likely result
47

4s if (adc_key_in > 1000) return btnNONE;

49

so // For V1.1 us this threshold

s1 if (adc_key_in < 50) return btnRIGHT;

s2 if (adc_key_in < 250) return btnUP;

s3 if (adc_key_in < 450) return btnDOWN;

sa if (adc_key_in < 650) return btnLEFT;

ss if (adc_key_in < 850) return btnSELECT;

56

s7 // For V1.0 comment the other threshold and use the one below:

58
59
60
61
62
63
64
65
66
67
68
69
70
7

o

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
9

2

92
93
9%
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

11

o

117
118
119

CAEN

Tools for Discovery

Application Note AN7589
Using Arduino to control A7585DU SiPM Power Supply

/*

if (adc_key_in < 50) return btnRIGHT;

if (adc_key_in < 195) return btnUP;

if (adc_key_in < 380) return btnDOWN;

if (adc_key_in < 555) return btnLEFT;

if (adc_key_in < 790) return btnSELECT;

*/

return btnNONE; // when all others fail , return this.
}

void setup () {

lcd.begin (16, 2); // start the library

InitNIPM (DEV_ADDRESS) ;

A7585_dev.Set_V (50);

A7585_dev.Set_Enable(false);

}

void loop () {

uint32_t delta;

char tmp[16];

float voltl, curl;

lcd.setCursor (0,0); // set the LCD cursor position
lcd.print ("V-SET:"); // print a message on the LCD
lcd.setCursor(6,0); // set the LCD cursor position
sprintf (tmp, "%d.%02d", (int)vset, (int)(vset*100)%100);
lcd.print (tmp); // print a message on the LCD
lcd.setCursor(11,0);

lcd.print("v"); // print a message on the LCD
delta=millis ()-tdow;

lcd.setCursor(15,0);

lcd. print(on_off?"x":"=");

curl = A7585_dev.Getlout();

voltl = A7585_dev.GetVout();

lcd.setCursor (8,1); // set the LCD cursor position

sprintf (tmp,
lcd.print (tmp);

lcd.setCursor(0,1);
sprintf (tmp,
lcd. print (tmp);

lcd_key =

switch (lcd_key){
case btnRIGHT :{

if (millis()-tl > inc)

120 {

121
122
12!

@

124
125
126
127
128

on_off=lon_off;

"Y%2d.%03duA",

"%2d.%034v ",

read_LCD_buttons () ;

(int)curl,(int32_t) (curl*1000)%1000);
// print a message on the LCD

// set the LCD cursor position

(int)voltl ,(int32_t) (voltl1*1000)%1000);
// print a message on the LCD

// read the buttons
// depending on which button was pushed, we perform an

//ON/OFF

A7585_dev.Set_Enable(on_off);

tl=millis ();
}
break;

}
case btnLEFT :{
break;

action

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

CAEN Application Note AN7589

Using Arduino to control A7585DU SiPM Power Supply

Tools for Discovery

}

case btnUP :{ //INCREASE VOLTAGE
if (millis()-tl > inc) //KEY DOWN MANAGE

{

if (vset<80)

vset += 0.01; //Add 10mv
A7585_dev.Set_V (vset); //Set Voltage

tl=millis ();

}

break;

}

case btnDOWN :{ //DECREASE VOLTAGE
if (millis()-tl > inc)

{

if (vset>22)

vset -= 0.01;
A7585_dev.Set_V (vset);
tl=millis ();

}

break;

}
case btnSELECT :{

break;

}

case btnNONE :{
tdow = millis ();
tl=0;

break;

}

}

//Change increment speed
if (delta<1000)

inc=500;

if (delta>1000)

inc=150;

if (delta>2500)

inc=0;

How to control multiple A7585DU

In the following example we show how to control up to 16 A7585D/DU, with the possibility to easily extend the chain
up to 127 modules. After connecting the display to the A7585DU as shown in Fig.5, it is possible to access the GitHub
library repository and load the MultipleDevA7585.ino sketch. The code initializes all connected modules (with different
I2C addresses) to generate 50V each and it enumerates them while scanning the 12C bus. The output is printed on the
serial port.

MultipleDevA7585.ino

#include <A7585lib.h>

#tinclude <Wire.h>

#include <stdio.h>

#include <stdlib.h>

#tdefine DEV_ADDRESS_BASE 0x40

A7585 A7585_dev([16];

https://github.com/NuclearInstruments/a7585d_lib

44

46
47
48
49
50
51
52
53
54
55
56
57

Application Note AN7589
CAEN Using Arduino to control A7585DU SiPM Power Supply

Tools for Discovery

(cAEN

AT7585DU

Fig. 5: Connection scheme for three A7585DU controlled by a single Arduino UNO.

void setup () {
int i;

Serial .begin(115200);
Wire . begin () ;
Serial.printin("Starting A7585 HV demo app. This app will ramp the HV");

for (i=0;i<16;i++)

{

A7585 dev[i].Init (DEV_ADDRESS_BASE+i);
A7585_dev([i].Set_Mode(0);
A7585_dev[i].Set_MaxV(80);

A7585 dev[i].Set_Maxl(10);
A7585_dev[i].Set_RampVs(25);
A7585_dev[i].Set_V(50);

Serial.print("Device ID ");
Serial.print (DEV_ADDRESS_BASE+i);

if (A7585_dev[i].GetConnectionStatus())
Serial.println(" connected");

else

Serial.println(" not connected");
A7585_dev[i].Set_V(50);

A7585 _dev[i].Set_Enable(true);

}

}
void loop () {

int i;
for (i=0;i<16;i++)
{

if (A7585_dev[i].GetConnectionStatus())

{Serial.print(DEV_ADDRESS_BASE + i); Serial.print("' ');}
else

{Serial.print('=-"); Serial.print(' ');}

}

Serial.printin(' ');

delay (1000);

}

10

CAEN Application Note AN7589

Tools for Discovery

Using Arduino to control A7585DU SiPM Power Supply

From Arduino software, download the code on the processor and surf into Tool— Serial Monitor. Set speed to 115200
and the software will output a new line every second, showing the address of the detected module.

References

(1]
(2]
(3]
(4]
(5]

UM6377 —A7585D/DU User Manual.

Arduino UNO. URL: https://store.arduino.cc/arduino-uno-rev3.

SNOOTLAB Deuligne LCD. URL: http://shieldlist.org/snootlab/le-deuligne.
Arduino platform. URL: https://store.arduino.cc/.

Raspberry Pl platform. URL: https://www.raspberrypi.org/.

Application Note AN7589 - Using Arduino to control A7585DU SiPM Power Supply rev. 0 - June llth, 2020

Copyright ©CAEN SpA. All rights reserved. Information in this publication supersedes all earlier versions. Specifications subject to change without notice.

CAEN SpA

Via Vetraia 11 e
AE N 55049 — Viareggio Italy
Tel +39.0584.388.398 WWW C a e n I
[[]

Tools for Discovery

Fax +39.0584.388.959

info@caen.it www.caen.it

11

https://store.arduino.cc/arduino-uno-rev3
http://shieldlist.org/snootlab/le-deuligne
https://store.arduino.cc/
https://www.raspberrypi.org/

	Abstract
	Introduction
	Hardware Setup
	Libraries Installation and Description
	How to control a single A7585DU
	How to control A7585DU with a Display shield
	How to control multiple A7585DU

